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ABSTRACT
Hearing loss result from genetic causes, complications at birth, certain infectious diseases, chronic ear infections, 
noise exposure, demographic characteristics (age, sex, race, education, and study site) and cardiovascular factors 
(smoking status, hypertension, diabetes and stroke). In this study, we propose a new mathematical model formu-
lated by ordinary differential equations (ODEs) that takes into account the some causes of hearing loss. The analysis 
of the model is investigated. In addition, numerical simulations are presented in order to validate our theoretical 
results.
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RESUMEN
La pérdida de audición se debe a causas genéticas, complicaciones en el nacimiento, enfermedades infecciosas, 
otitis crónica, exposición al ruido, características demográficas (edad, sexo, raza, educación y sitio de estudio) y 
factores cardiovasculares (estado de fumar, hipertensión, diabetes y accidente vascular cerebral). En este estudio, 
proponemos un nuevo modelo matemático formulado por ecuaciones diferenciales ordinarias (ODE) que toma en 
cuenta las causas de la pérdida de la audición. El análisis del modelo se estudia. Además, se presentan simulaciones 
numéricas para validar nuestros resultados teóricos.

PALABRAS CLAVE: infección viral; ecuaciones diferenciales ordinarias; estabilidad
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INTRODUCTION
Hearing loss may result from genetic causes, complica-

tions at birth, certain infectious diseases, chronic ear 
infections, the use of particular drugs, exposure to 
excessive noise and aging, which is represent a major 
global health problem. According to the World Health 
Organization (WHO), about 360 million people world-
wide have disabling hearing loss, and 32 million of these 
are children [1]. There are many infections and conta-
gious diseases related to hearing loss such as mumps. 
Mumps is an enveloped, single-stranded RNA virus 
belonging to the family paramyxoviridae and causes an 
acute infectious disease mainly in children and young 
adults [2]. Mumps is transmitted through infected respi-
ratory secretions and is highly contagious [3]. The most 
common clinical manifestations of infection include a 
u-like illness and bilateral swelling of the parotid glands. 
Mumps infection occasionally induces the potential for 
complications such as pancreatitis, orchitis, ophoritis, 
aseptic meningitis, encephalitis and sensorineural hear-
ing loss. Hearing loss due to mumps is thought to be 
unilateral and profound with rapid onset [4].

On the other hand, one of the most social factor of 
hearing loss is noise exposure (eg, through personal 
music players). This is a major cause of hearing loss 
worldwide [5]. In addition, the characteristic pathologi-
cal feature of noise-induced hearing loss is the loss of 
auditory sensory cells in the cochlea. Because these 
hair cells cannot regenerate in mammals, no remission 
can occur, prevention of noise-induced hearing loss is 
the only option to preserve hearing [6].

Abnormalities or damage in the structure inside the 
inner ear can result by many diseases that can load to 
the hearing loss. An example of such a disease is the 
Alport syndrome [7] and Meniere’s disease [8]. For these 
raisons, many mathematical models have been pro-
posed to model the function and the dysfunction of the 
inner ear by using partial differential equation (PDEs) [7, 

8, 9, 10, 11]. The epidemiological models in the beginning 

(1)

has started by Graunt [12] then described by Kermack and 
Mckendric [13] by considering the total population into 
three classes namely susceptible (S) individuals, infected 
(I) individuals and recovered (R) individuals which is 
known to us as SIR epidemic model [14, 15, 16]. Today, this 
SIR epidemic model is very important in analysis of 
many diseases. Referring to the simplest version of the 
most classical epidemiological model for directly-trans-
mitted infectious diseases [17, 18, 19, 20, 21, 22], as well as, the 
social and epidemiological factors of hearing loss exist-
ing in the biological studies and in the literature [23, 24, 25], 
we proposed a new mathematical model by using (ODEs) 
that describe the time dependence of the dynamics of 
hearing loss by considering the contagion factor is the 
mumps virus and the social factor is the exposure to 
noise. This model is described by the following system:

The population is divided into three epidemiological 
classes that are: H(t) is the number of susceptible indi-
viduals at time t (normal hearing), L(t) is the number 
of infected individuals at time t (loss of hearing), and  
R(t) is the number of removed individuals at time t 
(recovered hearing). Further Λ is the recruitment rate 
of the population, μ is the natural death rate of the 
population, β is the transmission rate due to social 
contagion of hearing loss (mumps), ε is the non-conta-
gion risk of hearing loss due to noise exposure and γ is 
the recovery rate of the infective individuals.

The rest of paper is organized as follows. In the next 
section, positivity and boundedness of solutions are 
studied. In Section 3, the basic reproduction number is 
derived, also the local and the global asymptotic sta-
bility of the equilibria are analyzed. The numerical 
results are given in Section 4. Lastly, we give a conclu-
sion of our results in Section 5.
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Positivity and boundedness of solutions
In this section, we will establish the positivity and 

boundedness of solutions of model (1), which proves 
that our model is well posed.

PROPOSITION 2.1. All solutions starting from 
non-negative initial conditions exist for all t > 0 and 
remain bounded and non-negative. 

PROOF. For the positivity, we show that any solution 
starting in non-negative orthant, ℝ3

+= {( H, L, R) ∈ ℝ3
+: 

H≥0, L≥0, R≥0}. In fact, (H(t), L (t), R(t)) ∈ ℝ3
+ and we have:

(2)

This proves the positivity of solutions. Now, we prove 
that the solutions are bounded. We defined T(t)= H(t)+L(t)
By non-negativity of the solution, it follows that;

Then

THEOREM 3.1. System (1) has a unique equilibrium 
point Eε

*, which is locally asymptotically stable.

PROOF. By equalizing to zero the rights members of 
the system (1), we find one endemic point that exists 
for above model:

Where

With

The Jacobian matrix of the system (1) is given by:

(3)

The characteristic equation of the endemic equilib-
rium point is given by;

From the last equation (1) and since L is bounded, we 
deduce that R is bounded. This completes the proof.

Stability analysis of hearing loss model

Local stability of endemic
equilibrium point for ε > 0

The following theorem presents the existence and 
uniqueness of endemic equilibrium if R0 > 1.

(4)

Note that coefficient 

are both positive if 
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From the Routh-Hurwitz theorem given in [26], all 
roots of equation (5) have negative real parts. 
Consequently Eε

* is locally asymptotically stable when-
ever R0 > 1.

Global stability of endemic
equilibrium point for ε > 0

The following theorem discusses the global stability 
of the endemic equilibrium.

THEOREM 3.2. The endemic equilibrium Eε
* of the 

system (1) is globally asymptotically stable.

PROOF. Consider the following  Lyapunov functional;

(5)

Where ϕ(x)=x-1-ln(x) x∈ ℝ+. Obviously, ϕ: ℝ+→ℝ+ 

attains its global minimum; at x =1 and ϕ(1)= 0. 

To simplify the presentation, we shall use the follow-
ing notation: H= H(t) and L= L(t).

Note that

Then, we obtain the following equation:

And

Hence, From equation (6), we have:

(6)
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(7)

Since,

We have

Thus Eε
* is stable, and  

if and only if H = Hε
*  and L = L*.

From LaSalle invariance principle [27], we conclude 
that Eε

* is globally asymptotically stable. Since ϕ(x) ≥ 
0, we have

Stability analysis for special case ε = 0

(8)

Notice that the system (8) has a basic reproductive 
number 

R0 represents the average number of secondary infec-
tions caused by an infective individual introduced into 
a group of susceptible.  By equalizing to zero the rights 
members of the system (8), we find two equilibrium 
points that exists for above model:

1. Disease-free equilibrium point Ef

2. Endemic equilibrium point E*= (H*, L*, R*) where,

The endemic equilibrium point exist only when

i.e the infection rate must be greater than the death 
rate of the infected individuals or R0 > 1.

Local stability of equilibria
The following theorems discuss the local stability of 

the equilibrium point.

THEOREM 3.3. 

1. If R0 < 1, then the disease-free equilibrium, Ef is 
locally asymptotically stable. 

2. If R0 > 1, Ef is unstable.

PROOF. The Jacobian matrix evaluated in the dis-
ease-free equilibrium
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is given by

Whose eigenvalues are  λ1= -μ < 0  and 

then R0 < 1 and therefore  Ef is locally asymptotically 
stable.

The disease-free equilibrium point is unstable if 

which translate into R0 � 1.

Now, we focus on local stability of the endemic infec-
tion equilibrium E*.

THEOREM 3.4.

1. If R0 > 1, E* is locally asymptotically stable.

2. If R0 < 1, then the endemic equilibrium E* does not 
exist.

PROOF. By substituting the endemic equilibrium  
E*= (H*, L*, R*) in the Jacobien matrix of the system (8)

The characteristic equation of the endemic equilib-
rium point is given by

(9)

Clearly when R0 > 1, both

And

then all roots of the characteristic equation have neg-
ative real parts. Consequently E* is locally asymptoti-
cally stable. 

Global stability of equilibria
In this section, we establish the global stability of the 

equilibria. Firstly, we have the following

THEOREM 3.5. The disease-free equilibrium Ef  is 
globally asymptotically stable when R0 < 1.

PROOF. Consider the following Lyapunov functional

Where

and calculating the time derivative of  V1(t) along the 
positive solution of system (8), we get;
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Where Λ= μHf , we have;

Since R0 ≤ 1, we have

Thus, the disease-free equilibrium Ef is stable, and

if and only if H = Hf and L(R0-1)=0.  We discuss two cases:

 › If R0 < 1, then L = 0.

 › If R0 = 1. From H = Hf and the first equation of  
the system (8), we have 

Then βHf L = 0, Hence L = 0.

From LaSalle invariance principle [27], we conclude 
that Ef is globally asymptotically stable.

Note that the disease-free equilibrium Ef is unstable 
when R0 > 1.

Now, we establish a set of conditions which are suffi-
cient for the global stability of the endemic equilib-
rium E*.

THEOREM 3.6. The endemic equilibrium E* of the 
system (8) is globally asymptotically stable.

PROOF. See the proof of theorem 3.2, and we replace 
ε by zero, we conclude that E* is globally asymptoti-
cally stable.

NUMERICAL SIMULATIONS
In this section, we show the numerical simulations 

and the graphs of system (1) to illustrate the different 
result obtained for each of the two cases  ε > 0 and ε = 
0 previously analyzed.

We choose the following data set of system (1) as fol-
lows: Λ= 0.5, μ= 0.1 and γ= 1/17. By using the values of  
Λ, μ, γ and ε= 0.0025 > 0 [28], we find β= 0.1433  for R0 > 
1 already defined for mumps disease [29]. Therefore, 
according to Theorem 3.2, the system (1) has a unique 
endemic equilibrium which is globally asymptotically 
stable. So, the solution of system (1) is persistent in 
population and converge to Eε

*= (1,1008; 2,4450), this 
results are illustrated in Figure 1. Now, we choose ε= 0 
which means the hearing loss result only from mumps 
diseases.  So, the system (1) has a disease free equilib-
rium Ef= (5,0) which is globally asymptotically stable 
when R0 < 1, then the disease dies out. Numerical sim-
ulations illustrated our results (see Figure 2). For  R0= 
4.4 > 1, the endemic E* is globally asymptotically sta-

a)

b)

FIGURE 1. Normal hearing (a) and loss of
hearing (b) individuals as function of time

in the case of ε = 0,0025 and R0>1.
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FIGURE 2. Normal hearing (a) and loss of
hearing (b) individuals as function of time

in the case of ε = 0 and R0 < 1.

a)

b)

FIGURE 3. Normal hearing (a) and loss of
hearing (b) individuals as function of time

in the case of  ε = 0 and R0 >  1.

a)

b)

FIGURE 4. Normal hearing (a) and loss of
hearing (b) individuals as function of time  in

the case of different values of  ε and R0>1.

a)

b)

ble which satisfy Theorem 3.6, (see Figure 3). In figure 
4, we use different values of ε > 0 and we find the 
solution of system (1), in this case, we observe that 
when we increase the value of ε the number of normal 
hearing individuals decrease and the numbers of hear-
ing loss increase.

CONCLUSIONS
In this paper, we have presented a mathematical 

model of hearing loss based on a nonlinear system of 
differential equations. We analysis the hearing loss 
resulting from two factors, the first factor is contagious 
due to Mumps disease and the second is social caused 
by exposure to noise. By analysis the model, we have 
proved the existence, positivity and the boundedness 
of solutions of the problem, which implies that the 
model is well posed. We have shown in the case of ε = 0 
that the disease free equilibrium is globally asymptoti-
cally stable if the basic reproductive number R0 < 1 and 
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the endemic point is globally asymptotically stable 
when R0 > 1. In the case of hearing loss with the both 
factors mumps and noise ε > 0 the system has a unique 
endemic point exists and is globally asymptotically 

stable, which means that the disease persists in the 
population.  In addition, the simulation of this model 
provides that the number of individuals with hearing 
loss increase when we introduce the risk factor noise.
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