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Comparison of Accuracy of Color Spaces in Cell Features Classification 
in Images of Leukemia types ALL and MM

Comparación de Precisión de Espacios de Color en la Clasificación de Características de Células 
en Imágenes de Leucemia tipos ALL y MM
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Universidad Autónoma de Querétaro

ABSTRACT 
This study presents a methodology for identifying the color space that provides the best performance in an image 
processing application. When measurements are performed without selecting the appropriate color model, the ac-
curacy of the results is considerably altered. It is significant in computation, mainly when a diagnostic is based on 
stained cell microscopy images. This work shows how the proper selection of the color model provides better char-
acterization in two types of cancer, acute lymphoid leukemia, and multiple myeloma. The methodology uses images 
from a public database. First, the nuclei are segmented, and then statistical moments are calculated for class iden-
tification. After, a principal component analysis is performed to reduce the extracted features and identify the most 
significant ones. At last, the predictive model is evaluated using the k-nearest neighbor algorithm and a confusion 
matrix. For the images used, the results showed that the CIE L*a*b color space best characterized the analyzed cancer 
types with an average accuracy of 95.52%. With an accuracy of 91.81%, RGB and CMY spaces followed. HSI and HSV 
spaces had an accuracy of 87.86% and 89.39%, respectively, and the worst performer was grayscale with an accuracy 
of 55.56%.
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RESUMEN 
Este estudio presenta una metodología para identificar el espacio de color que proporciona el mejor rendimiento en 
una aplicación de procesamiento de imágenes. Cuando las mediciones se realizan sin seleccionar el modelo de color 
adecuado, la precisión de los resultados se altera considerablemente. Esto es significativo en el procesamiento, prin-
cipalmente cuando el diagnóstico se basa en imágenes de microscopía de células teñidas. Este trabajo muestra cómo 
la selección adecuada del modelo de color proporciona una mejor caracterización en dos tipos de cáncer, la leucemia 
linfoide aguda y el mieloma múltiple. La metodología utiliza imágenes de una base de datos pública. Primero, se seg-
mentan los núcleos y luego se calculan los momentos estadísticos para la identificación de clases. Posteriormente, 
se realiza un análisis de componentes principales para reducir las características extraídas e identificar las más signi-
ficativas. Por último, el modelo predictivo se evalúa utilizando el algoritmo k-vecinos más cercanos y una matriz de 
confusión. Para las imágenes utilizadas, los resultados mostraron que el espacio de color CIE L*a*b caracterizó mejor 
los tipos de cáncer analizados con una precisión promedio del 95,52%. Con una precisión del 91,81%, siguieron los 
espacios RGB y CMY. Los espacios HSI y HSV tuvieron una precisión del 87,86% y el 89,39%, respectivamente, y el 
peor desempeño fue la escala de grises con una precisión del 55,56%.

PALABRAS CLAVE: PCA, Momentos estadísticos, Espacios de color, Imágenes de leucemia
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INTRODUCTION
Leukemia is a blood disease distinguished by the ab- 

normal production of white blood cells [1]. Its diagnosis 
uses a blood smear where the presence of myeloblasts 
or lymphoblasts is determined [2] [3]. This examination is 
usually a time-consuming manual process and requires 
microscopist expertise [4] [5] [6]. Recently, image process-
ing techniques with machine learning have been used, 
which integrate image processing and segmentation, 
feature extraction and selection, and a classification 
algorithm [7] [8]. The most critical steps are segmentation 
and selection of significant features [9] [10] [11]. 

During microscopic analysis, cells are stained to pro-
vide visibility and contrast [12]. The segmentation stage 
separates the cells from the rest of the image from the 
acquired color. Among the techniques that have been 
applied to segment are K means [13] [14] [15] [16] [17] [18], Fuzzy 
c-means [19], Triangle thresholding [20] [21] [22], and Otsu 
thresholding [9] [23] [24] [25] [26], which are usually accompa-
nied by the Watershed algorithm to divide adjacent or 
overlapping cells [27] [28].

From the nucleus or cytoplasm, parameters are cal-
culated that help to identify cancer types. Several fea-
tures can be analyzed, including geometric, statistical, 
and texture [21] [26] [29]. The number of parameters used 
should be limited using a reduction algorithm to 
improve the efficiency of classification model [30] [31].

Some methods to decrease the number of characteris-
tics are Univariate feature selection (k-Best) [32], Social 
Spider Optimization Algorithm (SSOA) [33], Genetic 
Algorithm (GA) [25], Statistically Enhanced Salp Swarm 
Algorithm (SESSA) [34], Linear Discriminant Analysis 
(LDA) [35] and Principal Component Analysis (PCA) [35] 

[36] [37]. The latter is a statistical technique that reduces 
the dimension of a data set and generates a new set of 
uncorrelated variables. These are called principal com-
ponents (PC), and their relationship preserves the max-
imum variation from the original data set [38] [39].

On the other hand, color models are used to define 
the way to represent the tones mathematically. The 
color spaces RGB [9] [26], CMYK [16] [20] [35], HSI [23] [40], HSV 
[19] [24], and CIE L*a*b [14] [41], and grayscale [25] [42] [43] have 
been used for this type of application. Studies have 
identified that RGB is not ideal for the segmentation of 
these cells, while HSI, HSV, and CMY perform better [44] 

[45]. In a group of images where the capture brightness 
effect varies, the use of HSV space may be the most 
appropriate because it separates the image intensity 
from the color information [17] [19].

In feature extraction, statistical and color properties 
have been obtained from various spaces such as, RGB 
[21] [30], HSV [13] [19] [46], HSI [35] and CIE L*a*b [14]. Of these, 
RGB and HSV spaces are the most widely used, but the 
use of these representations has not been justified [14] 

[21] [33] [47]. Although statistical and color features are an 
important source of information, no studies have yet 
been performed to compare the accuracy of color space 
using these characteristics in cell sorting with staining.

This paper proposes to use a principal component 
analysis with statistical descriptors as input variables 
to determine the color space that best represents the 
information of a set of images. This process is ana-
lyzed by using the k nearest neighbors (kNN) algo-
rithm and a confusion matrix to determine the accu-
racy of the predictive model. The objective of the 
study is to propose a tool to image processing method-
ologies to identify the model that best represents the 
content of the region of interest (ROI). In particular, it 
is applied to identify two types of cancer, acute lym-
phoid leukemia (ALL) and multiple myeloma (MM).

MATERIAL AND METHODS

Image Dataset Definition
The set of images used in this work is a collection of 

microscopic bone marrow images of patients diag-
nosed with B-lineage acute lymphoid leukemia and 
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multiple myeloma, published in The Cancer Imaging 
Archive (TCIA) by Gupta, A. and Gupta, R. [48]. They 
have a resolution of 2560x1920 pixels, were captured 
using a Nikon Eclipse-200 microscope at 1000x magni-
fication, and slides were stained with Jenner-Giemsa 
stain. This study used 60 samples, 30 ALL and 30 MM.

Nucleus Segmentation of Leukemia Cells
Based on studies by Jagadev and Virani [17], Mirmoha-

mmadi et al. [19], and Rahman and Hasan [21], the image 
segmentation was performed using the HSV space, con-
sidering that it separates the intensity of the image 
from the color information, and the images of the data-
base do not have uniform brightness. For the segmenta-
tion process, first, the intensity of the images was 

adjusted to a range of 0.1 to 0.7 using the value channel 
(V) to decrease the capture luminance effect [19]. The 
ROI was defined with a threshold value in the Hue (H) 
and Saturation (S) components. After a binary segmen-
tation, the holes were filled using a morphological clo-
sure with disk shape structure element of radius 4 [49]. 
The watershed algorithm was used to the resulting 
image to separate the overlapping nuclei. Subsequently, 
objects with an area of fewer than 17500 pixels and ele-
ments with an eccentricity greater than 0.80 and solid-
ity less than 0.65 were removed [14] [21] [50]. The ROI was 
established from the original images using the binary 
mask. A total of 484 blast cell nuclei, 168 ALL and 316 
MM, were then extracted. The segmentation results for 
two sample images are visualized in Figure 1.

FIGURE 1. Steps of Leukemic Cell Segmentation. ALL original image is shown in a).
ALL Image enhancement in b). ALL binary mask in c). ALL filtering and watershed segmentation in d).

ALL segmentation result in e). MM original image in f). MM Image enhancement in g). MM binary mask in h).
MM filtering and watershed segmentation in i). MM segmentation result j).

Feature Extraction
Mean, variance, standard deviation, skewness, kur-

tosis, entropy, and energy, were calculated for each 
nucleus from an image for each color space channel 
and grayscale. Equations 1 to 7 show the definition 
of each one of these parameters, where Z represents 
the intensity as a random variable, p(Zi), i= 0, 1, 2, 
..., L-1 is the probability of occurrence of the value 
Zi and L is the number of different possible values 

[51]. For each leukemia cell, a total of 21 features 
were obtained in each color space and 7 for gray-
scale.
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Feature Selection
The most significant features of each color space were 

identified using principal component analysis. First, 
the number of statistical descriptors in the dataset was 

reduced using the “statistics” and “FactoRMine” 
libraries of Rstudio software [52] [53]. For this, we first 
checked for a low partial correlation value between 
each pair of features, using the Kaiser-Meyer-Olkin 
(KMO) coefficient. If for any of these pairs, mean-vari-
ance, mean-standard deviation, mean-skewness, etc., 
the KMO coefficient is less than 0.5, the value indi-
cates that it is not appropriate to use PCA in that 
model. Then Bartlett's test of sphericity (BTS) with a 
significance level of p<0.05 is used to estimate the cor-
relation between variables.

PCA for each color model was performed based on an 
initial data table represented by a matrix of 484 rows, 
containing 168 observations of ALL and 316 MM type 
cells. The measurement result for each statistical 
descriptor is shown by columns (21 characteristics for 
the RGB, CMY, HSV, HSI, and CIE L *a*b color spaces 
and 7 for grayscale). Table 1 shows an example of this 
for the RGB model components.

TABLE 1. Data matrix for RGB for an example image. Mean (M), variance (V), standard deviation (SD), 
Skewness (S), energy (Er) and entropy (Et). The initial of RGB channels was added to each descriptor.Tabla 1 

 
Sample MR VR SDR SR KR ErR EtR MG … EtG MB … EtB 

ALL_1_1 85.26 266.19 16.32 -0.22 0.71 0.02 0.74 42.10 … 0.59 103.07 … 0.62 

ALL_1_2 85.09 253.95 15.94 -0.48 0.07 0.02 0.74 42.70 … 0.59 105.67 … 0.63 

ALL_1_3 88.99 69.71 8.35 0.31 0.13 0.03 0.63 42.63 … 0.56 106.09 … 0.55 

…
 … … … … … … … … … … … … 

…
 

…
 … … … … … … … … … … … … 

…
 

MM_30_10 143.32 99.41 9.97 1.33 3.03 0.03 0.65 65.77 … 0.65 120.03 … 0.52 

MM_30_11 97.95 337.36 18.37 0.93 2.23 0.02 0.77 43.93 … 0.60 106.36 … 0.61 

MM_30_12 122.91 138.44 11.77 0.42 0.08 0.02 0.70 57.04 … 0.67 115.60 … 0.54 

 
Tabla 2 

 
Color System Channel 1 Channel 2 Channel 3 

Grayscale 
 

  

RGB 
   

CMY 
   

HSI 
   

CIE L*a*b 
   

HSV 

   

 
Table 3 

 
Test Stat GS RGB CMY HSI L*a*b HSV 

KMO  0.61 0.72 0.72 0.68 0.71 0.62 

BTS 

χ² 5779 20621 20621 20728 20133 18346 

df 21 210 210 210 210 210 

p <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 
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Each table column is standardized to an average of 0 
and a standard deviation of 1 using Equation 8, where 
Xj is the value to be standardized, Xjs represents the 
standardized value and, µx and σx are the average and 
the standard deviation of the column.

A covariance matrix was calculated using the stan-
dardized values for each table to estimate the correla-
tion and dependence between variables. Equation 9 
was used to evaluate covariances between each pair of 
characteristics. Where σjk is the covariance between 
the two variables, Xj and Xk represent the standardized 
value of variables j and k, µj and µk are the column aver-
ages of variables j and k, and n is the total data per 
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column. The correlation coefficient of the covariances 
was determined by Equation 10. It is obtained by 
dividing the covariance by the standard deviations of 
Xj and Xk represented by σj and σk.
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The covariance matrix C is represented as in Equation 
11, where Cov(i, j) is the covariance between the ele-
ments in row i and column j. This matrix is decom-
posed into its eigenvalues and eigenvectors to deter-
mine the principal components. By solving Equation 
12, the eigenvalues λk are obtained and for each of 
them, its eigenvector Vk is determined using Equation 
13, where I is the identity matrix. The eigenvectors 
correspond to the principal components, and the 
eigenvalues define the magnitude of the variance of 
the new set of variables. Finally, the eigenvectors are 
sorted in descending order to select the components 
that retain at least 80% of the information from the 
original data set.
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ALL and MM Classification
The ALL and MM cancer types were classified using 

the principal components or new variables. For this 
purpose, the k nearest neighbor algorithm was 
employed using the Rstudio software [54]. Data was ran-
domly divided into two sets. 80% of them were used as 
training data and the remaining 20% as test data.

In the training phase, the kNN algorithm stores the 
set of input variables to establish a relationship 
between them and the conditions to be classified, cal-
culating a distance between the rows of training data 
and the test set data. It was determined as a function 
of the Euclidean distance (ED) using Equation 14, 
where A and B represent the principal component vec-
tors A= (x1, x2, x3, x4, ... xm), B= (y1, y2, y3, y4, ... ym), and 
m, the dimensionality of the feature space.

(14)𝐸𝐸𝐸𝐸	(𝐴𝐴, 𝐵𝐵) = 	3'(𝑥𝑥! − 𝑦𝑦!)*
0

!%$

 

 
 

𝑘𝑘 =	√𝑁𝑁 
 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦	 = 	
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

The resulting vector was ordered from smallest to 
largest so that the smallest distance is considered the 
k nearest neighbor.

Subsequently, a number for k was defined to deter-
mine the nearest neighbors to include in the voting 
process using Equation 15. N represents the total data 
in the training set. The operation resulted in a k = 17.

(15)

𝐸𝐸𝐸𝐸	(𝐴𝐴, 𝐵𝐵) = 	3'(𝑥𝑥! − 𝑦𝑦!)*
0

!%$

 

 
 

𝑘𝑘 =	√𝑁𝑁 
 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦	 = 	
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 Finally, to determine the performance of the kNN 
classifier, the confusion matrix was applied. The met-
ric provided is the accuracy and is defined by Equation 
16. Where TP is the true positives, FN is the false neg-
atives, FP indicates the number of false positives, and 
TN is the number of true negatives.

(16)

𝐸𝐸𝐸𝐸	(𝐴𝐴, 𝐵𝐵) = 	3'(𝑥𝑥! − 𝑦𝑦!)*
0

!%$
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦	 = 	
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𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 

Statistical Analysis
Lastly, differences of accuracy between color and 

grayscale spaces were analyzed using a one-way anal-
ysis of variance (ANOVA) and Tukey's posthoc test. 
The sample size was calculated using statistical power 
analysis. A significance level of 0.05 was established, 
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with a power of 0.8 and an effect size of 0.25. The 
study determined a sample size of 35. The normality of 
the residuals was assessed by performing the Shapiro 
Wilks test, and Bartlett's test demonstrated the homo-
geneity of variances. For each analysis, was used a 
significance level of p<0.05.

RESULTS AND DISCUSSION
This section shows the results of the comparison 

between color spaces and grayscale. Table 2 shows an 
example of channel decomposition and grayscale con-
version of an example image.

Tabla 1 
 

Sample MR VR SDR SR KR ErR EtR MG … EtG MB … EtB 

ALL_1_1 85.26 266.19 16.32 -0.22 0.71 0.02 0.74 42.10 … 0.59 103.07 … 0.62 

ALL_1_2 85.09 253.95 15.94 -0.48 0.07 0.02 0.74 42.70 … 0.59 105.67 … 0.63 

ALL_1_3 88.99 69.71 8.35 0.31 0.13 0.03 0.63 42.63 … 0.56 106.09 … 0.55 

…
 … … … … … … … … … … … … 

…
 

…
 … … … … … … … … … … … … 

…
 

MM_30_10 143.32 99.41 9.97 1.33 3.03 0.03 0.65 65.77 … 0.65 120.03 … 0.52 

MM_30_11 97.95 337.36 18.37 0.93 2.23 0.02 0.77 43.93 … 0.60 106.36 … 0.61 

MM_30_12 122.91 138.44 11.77 0.42 0.08 0.02 0.70 57.04 … 0.67 115.60 … 0.54 

 
Tabla 2 

 
Color System Channel 1 Channel 2 Channel 3 

Grayscale 
 

  

RGB 
   

CMY 
   

HSI 
   

CIE L*a*b 
   

HSV 

   

 
Table 3 

 
Test Stat GS RGB CMY HSI L*a*b HSV 

KMO  0.61 0.72 0.72 0.68 0.71 0.62 

BTS 

χ² 5779 20621 20621 20728 20133 18346 

df 21 210 210 210 210 210 

p <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

 
 
 
 
 
 
 
 
 
 
 
 

TABLE 2. Channel division of color representations. 
Channel 1, Channel 2 and Channel 3 correspond to 

the color band of each color space.

As presented in Table 1, KMO coefficient was calcu-
lated; in all cases, the value was greater than 0.5. 
Bartlett's test was performed considering the parame-
ters of all images as input, presenting for each color 
space a significant p-value less than α= 0.05. Thus, the 
application of the PCA is adequate. The results of these 
tests are shown in Table 3.

TABLE 3. Results for Kaiser-Meyer-Olkin measure 
of sampling adequacy (KMO) and Bartlett’s test of 

sphericity (BTS). Chi-square (χ²), degrees of freedom 
(df), p value (p), statistic (stat) and grayscale (GS).

Tabla 1 
 

Sample MR VR SDR SR KR ErR EtR MG … EtG MB … EtB 

ALL_1_1 85.26 266.19 16.32 -0.22 0.71 0.02 0.74 42.10 … 0.59 103.07 … 0.62 

ALL_1_2 85.09 253.95 15.94 -0.48 0.07 0.02 0.74 42.70 … 0.59 105.67 … 0.63 

ALL_1_3 88.99 69.71 8.35 0.31 0.13 0.03 0.63 42.63 … 0.56 106.09 … 0.55 

…
 … … … … … … … … … … … … 

…
 

…
 … … … … … … … … … … … … 

…
 

MM_30_10 143.32 99.41 9.97 1.33 3.03 0.03 0.65 65.77 … 0.65 120.03 … 0.52 

MM_30_11 97.95 337.36 18.37 0.93 2.23 0.02 0.77 43.93 … 0.60 106.36 … 0.61 

MM_30_12 122.91 138.44 11.77 0.42 0.08 0.02 0.70 57.04 … 0.67 115.60 … 0.54 

 
Tabla 2 

 
Color System Channel 1 Channel 2 Channel 3 

Grayscale 
 

  

RGB 
   

CMY 
   

HSI 
   

CIE L*a*b 
   

HSV 

   

 
Table 3 

 
Test Stat GS RGB CMY HSI L*a*b HSV 

KMO  0.61 0.72 0.72 0.68 0.71 0.62 

BTS 

χ² 5779 20621 20621 20728 20133 18346 

df 21 210 210 210 210 210 

p <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

 
 
 
 
 
 
 
 
 
 
 
 

The summary of the PCA is shown in Table 4. The 
principal components were selected according to the 
total variance method, retaining at least 80% of the 
information of the original set of variables. In RGB, 
CMY, CIE L*a*b, and HSI spaces, 4 PCs were taken; in 
HSV, 5 PCs; and in grayscale, 2 PCs.

Table 4 
 

Color 
System PC λ Var 

(%) 
Cum. Var 

(%) 

Grayscale 
1 3.49 49.9 49.9 
2 2.73 38.9 88.8 

RGB 

1 8.02 38.2 38.2 
2 5.95 28.3 66.5 
3 1.72 8.21 74.7 
4 1.46 6.94 81.7 

CMY 

1 8.02 38.2 38.2 
2 5.95 28.3 66.5 
3 1.72 8.21 74.7 
4 1.46 6.94 81.7 

HSI 

1 6.42 30.6 30.6 
2 5.18 24.7 55.2 
3 4.00 19 74.3 
4 1.85 8.82 83.1 

CIE 

1 7.53 35.9 35.9 
2 6.00 28.6 64.5 
3 2.04 9.71 74.2 
4 1.49 7.11 81.3 

HSV 

1 5.82 27.7 27.7 
2 4.51 21.5 49.2 
3 3.11 14.8 64.0 
4 1.96 9.36 73.3 
5 1.83 8.71 82.0 

 
Table 4.1 

 
Color 

System 
PC λ Var 

(%) 
Cum. 

Var (%) 

Grayscale 1 3.49 49.9 49.9 

2 2.73 38.9 88.8 

RGB 1 8.02 38.2 38.2 

2 5.95 28.3 66.5 

3 1.72 8.21 74.7 

4 1.46 6.94 81.7 

CMY 1 8.02 38.2 38.2 

2 5.95 28.3 66.5 

3 1.72 8.21 74.7 

4 1.46 6.94 81.7 

HSI 1 6.42 30.6 30.6 

2 5.18 24.7 55.2 

3 4.00 19 74.3 

4 1.85 8.82 83.1 

CIE 1 7.53 35.9 35.9 

2 6.00 28.6 64.5 

3 2.04 9.71 74.2 

4 1.49 7.11 81.3 

HSV 1 5.82 27.7 27.7 

2 4.51 21.5 49.2 

3 3.11 14.8 64.0 

4 1.96 9.36 73.3 

5 1.83 8.71 82.0 

 
 

TABLE 4. Principal component analysis summary.
The percentage of cumulative variance (Cum. Var)

retained by the PC's are highlighted in blue. Principal 
component (PC), eigenvalue (λ), variance (Var).
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The results show that grayscale retains more infor-
mation in its first two components than the color 
spaces (see Table 4 data highlighted in blue). The CIE 
L*a*b space has the highest information loss of 81.3%.

A two-dimensional PCA space was projected for 
each color model considering the first two compo-
nents with the highest contribution, as shown in 
Figure 2. The upper and right coordinates (abscissa 
and ordinate axis for PC1 and PC2 loadings) show 
the degree of contribution to the principal compo-
nents. In these graphs, the black vectors called load-
ings represent the statistical descriptors. Charge 
vectors range is from -1 to 1. Charges close to |1| 
indicate that the variable strongly influences the 
principal component; those close to 0 denote a weak 
influence.

A coefficient greater than |0.5| is considered signifi-
cant to define a PC. For example, for Figure 1a corre-
sponding to grayscale PCA, the mean (M), skewness (S), 
kurtosis (K), and energy (Er) contribute most to PC1. 
Variance (V), standard deviation (SD), energy (Er) and 
entropy (Et) contribute most to PC2.

The angle between loadings is their correlation. 
Vectors with equal directions are positively correlated, 
and those with opposite directions are negatively cor-
related. If they present an angle of 90°, there is no 
correlation. The vertical and horizontal axes show the 
percentage of variability explained by the principal 
components. The points on the graph are the channel 
measurements of the color models. Cancer types are 
grouped in concentration ellipses, ALL cells in blue 
and MM cells in orange.

As shown in Figure 2, vector loadings differ between 
color representations, yet it is possible to establish a 
reliable prediction model because the loadings are sig-
nificant. Although the clusters of the two cancers 
overlap at some points in the two-dimensional PCA 

 
Table 5 

 
No. GS RGB CMY HSI L*a*b HSV 

1 86.6 89.7 89.7 87.6 95.9 92.8 

2 87.6 91.8 91.8 93.8 100.0 92.8 

3 86.6 90.7 90.7 84.5 93.8 86.6 

4 85.6 89.7 89.7 86.6 95.9 86.6 

5 88.7 95.9 95.9 93.8 96.9 93.8 

6 84.5 93.8 93.8 88.7 97.9 89.7 

7 84.5 88.7 88.7 80.4 96.9 86.6 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

34 78.4 92.8 92.8 89.7 95.9 87.6 

35 88.7 91.8 91.8 87.6 93.8 85.6 

µ 84.7 91.8 91.8 87.9 95.5 89.4 

 
Table 6 

 
Source Df SS MS F value p-value 

Model 5 2436 487.2 54.12 <2e-16 

Error 204 1836 9.0   

 

TABLE 5. kNN Accuracy results for each color model. 
Data are in percentage. Grayscale (GS). Average (µ). 

space, a clear separation is visualized between the ALL 
and MM descriptors (Figure 2a to Figure 2f). The pre-
cision results when evaluating the predictive model 
using kNN are shown in Table 5. Each of the 35 sam-
ples was studied using a different random data set.

 A one-way ANOVA was then applied to compare the 
performance of each color model statistically. First, 
the normality of the residuals was tested using the 
Shapiro-Wilks test; the p-value = 0.0947 showed that 
they did follow normal behavior. Bartlett's test deter-
mined compliance with homogeneity of variance 
between treatments with a p-value of 0.2215, suggest-
ing no evidence of statistically significant variation 
between color representations for ANOVA.

The variance analysis revealed a significant differ-
ence between the color models with a p-value less 
than 0.05 (See Table 6).

TABLE 6. One-way ANOVA results. 
Sum of squares (SS), mean square (MS).

 
Table 5 

 
No. GS RGB CMY HSI L*a*b HSV 

1 86.6 89.7 89.7 87.6 95.9 92.8 

2 87.6 91.8 91.8 93.8 100.0 92.8 

3 86.6 90.7 90.7 84.5 93.8 86.6 

4 85.6 89.7 89.7 86.6 95.9 86.6 

5 88.7 95.9 95.9 93.8 96.9 93.8 

6 84.5 93.8 93.8 88.7 97.9 89.7 

7 84.5 88.7 88.7 80.4 96.9 86.6 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

34 78.4 92.8 92.8 89.7 95.9 87.6 

35 88.7 91.8 91.8 87.6 93.8 85.6 

µ 84.7 91.8 91.8 87.9 95.5 89.4 

 
Table 6 

 
Source Df SS MS F value p-value 

Model 5 2436 487.2 54.12 <2e-16 

Error 204 1836 9.0   

 



Cinthia Espinoza-Del Angel et al. Comparison of Accuracy of Color Spaces in Cell Features Classification in Images of Leukemia types ALL and MM 47

FIGURE 2. PCA biplot for components 1 and 2. Grayscale is shown in a), RGB in b), CMY in c), HSI in d), CIE L*a*b in e), 
and HSV in f). Ellipses represent a concentration of the scores for each group set with 95% confidence boundaries. 

Mean (M), variance (V), standard deviation (SD), Skewness (S), energy (Er) and entropy (Et).

a) b)

c) d)

e) f)
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In Figure 3, the distribution of color representations 
exhibits a normal distribution; outliers are minimal. The 
whiskers in the box represent the boundaries of the pre-
cision samples drawn for each group. The red dot indi-
cates the mean accuracy of color representation. In gray-
scale was 84.7; in RGB, 91.8; in CMY, 91.8; in HSI, 87.9; in 
HSV, 89.4; and in CIE L*a*b, 95.5. The predictive model 
given by the characteristics of the CIE L*a*b color space 
obtained the highest accuracy, followed by the RGB and 
CMY spaces. Grayscale was the worst performer.

FIGURE 3. Anova results for each color model.

FIGURE 4. Tukey post hoc test pairwise comparison
plot. Extended lines in blue color show statistically 
significant differences between the pairs of means,

and extended lines in purple indicate that there is no 
statistical difference between the means.

The pairwise comparisons of means of the color mod-
els obtained by Tukey's test can be seen in Figure 4.

In the graph, the extended lines show the 95% confi-
dence intervals. Those crossing the 0 points indicate that 
there is no statistically significant difference between 
the pairs of means. The analysis revealed that there is no 
inequality between RGB and CMY spaces (p-value = 
1.00); and HSI and HSV spaces (p-value = 0.27408).

CONCLUSIONS
The use of machine learning and image processing 

methods play an important role in image analysis for 
prognosis and early detection of blood cancer. Research 
for leukemia image classification techniques has used 
color characteristics from RGB and HSV spaces [21] [30] [13] 

[19] [46], but other color models are rarely used.

This article presents a methodology to compare the 
accuracy of different color models to represent the 
characteristics of leukemia cells. Of the color spaces 
analyzed, the CIE L*a*b best described the two cancer 
types, ALL and MM, using color moments with an 
average accuracy of 95.52%. 

Compared to reference articles, the accuracy obtai-
ned in this study was superior to that of [36], which 
used RGB and grayscale space color and texture fea-
tures. The PCA and the KNN and SVM classifiers were 
used, obtaining an accuracy of 91.45% and 92.63%, 
respectively. 

Likewise, a better performance was obtained than [30], 
which used the color characteristics of the RGB space 
and compared six classifiers; KNN (80.7%), tree classi-
fier (75.8%), ANN (83.5%), logistic regression (82.4%), 
random forest (81.0%) and SVM (73.6%). The method 
proposed was similar to the studies [14] [19] in which the 
SVM classifier was used. In [14], the color characteris-
tics of the RGB, HSV, and CIE L*a*b spaces were used, 
reaching an accuracy of 95.28%, and in [19], texture 
characteristics of the grayscale were used, achieving 
an accuracy of 95%. The presented method has pro-
vided novel information on how color spaces can 
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influence the selection of features for image analysis 
of leukemic cells. Future research could extend the 
classification approach by considering other cancer 
types or subtypes, using other classifiers, or selecting 
different feature selection methods.
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