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ABSTRACT 
Cardiovascular diseases (CVDs) remain the leading cause of morbidity worldwide. The heart sound signal or 
phonocardiogram (PCG) is the most simple, low-cost, and effective tool to assist physicians in diagnosing CVDs. 
Advances in signal processing and machine learning have motivated the design of computer-aided systems for heart 
illness detection based only on the PCG. The objective of this work is to compare the effects of using spectral and 
sparse features for a classification scheme to detect the presence/absence of a pathological state in a heart sound 
signal, more specifically, sparse representations using Matching Pursuit with multiscale Gabor time-frequency 
dictionaries, linear prediction coding, and Mel-frequency cepstral coefficients. This work compares the performance 
of PCGs classification applying features as a result of averaging the samples or the features for each PCG sound event 
when feeding a random forest (RF) classifier. For data balancing, random under-sampling and synthetic minority 
oversampling (SMOTE) methods were applied. Furthermore, we compare the Correlation Feature Selection (CFS) and 
Information Gain (IG) for the dimensionality reduction. The findings show a SE=93.17 %, SP=84.32 % and ACC=85.9 
% when joining MP+LPC+MFCC features set with an AUC=0.969 showing that these features are promising to be used 
in heart sounds anomaly detection schemes.
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RESUMEN 
Las enfermedades cardiovasculares (ECVs) han persistido como la principal causa de mortalidad en el mundo. 
La señal de audio cardiaco o fonocardiograma (FCG) es la herramienta más simple, efectiva y de bajo costo para 
auxiliar a especialistas diagnosticando ECVs. Los avances en el procesamiento de señales y aprendizaje máquina 
han motivado el diseño de auscultación y detección computarizada. El objetivo de este trabajo es comparar el uso 
de características espectrales y dispersas para un sistema de clasificación que detecte la presencia/ausencia de una 
patología en un audio cardiaco mediante representaciones dispersas usando Matching Pursuit con diccionarios de 
Gabor tiempo-frequencia, predicción lineal y coeficientes cepstrales Mel. Se crearon 5 conjuntos de características 
como resultado de combinar las características para cada FCG y se examinó su desempeño usando un clasificador 
de bosque aleatorio (RF). Se aplicaron métodos de balanceo de muestras basados en sobremuestreo (SMOTE) y 
submuestreo aleatorio. Se compararon métodos de selección de características por correlación (CFS) y ganancia de 
información (IG) para reducir la dimensionalidad del conjunto. Los resultados muestran métricas de SE=93.17 %, 
SP=84.32 % y ACC=85.9 % al juntar los parámetros MP+LPC+MFCC además de una AUC=0.969. El trabajo muestra 
el potencial de las características espectrales y escasas para la detección de patologías en señales de audio cardiaco.

PALABRAS CLAVE: características espectrales, clasificación, matching pursuit, representación tiempo-frecuencia, sonidos 
cardiacos
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INTRODUCTION

FIGURE 1. Top: time waveform and spectrogram of a normal 
PCG signal. Bottom: time waveform and spectrogram of an 

abnormal (pathological) PCG signal.

Heart diseases remain the leading cause of death 
worldwide, according to a report from the World Health 
Organization [1]. An effective method that leads to the 
primary diagnosis of heart illness is automatic abnor-
mal heart sound detection, which aims to identify the 
presence of a cardiac malfunction. This area has raised 
interest among researchers with the introduction of 
electronic stethoscopes and the advances in signal pro-
cessing. In general, the methods for diagnosing patho-
logical states of heart sounds consist of two stages: 
firstly, the feature extraction process to obtain the 
most representative parameters of cardiac sound, and 
secondly, the classification, which predicts the patient's 
condition from the patterns found in the extracted fea-
tures. In healthy individuals (adults), the heart sound 
signal, also known as phonocardiogram (PCG), com-
prises two main components called fundamental heart 
sounds (FHS), which are denoted as s1 and s2. Usually, a 
typical time duration and low-frequency spectral con-
tent characterize each FHS. For instance, the s1 compo-
nents dominate the region from 10 Hz to 140 Hz, while 
the s2 components usually concentrate their energy 
around the 10 Hz to 200 Hz band [2]. 

In pathological conditions, sounds named murmurs 
appear. Murmurs are sounds stemming from a turbu-
lent blood flow due to a valve malfunction or an 
obstruction, denoting a pathological or abnormal state. 
The energy distribution of murmurs in frequency var-
ies widely and, depending on their nature, can go 
above 800 Hz. Unfortunately, the frequency content of 
murmurs can overlap with the distribution of s1 and s2, 
and thus, the correct identification of the sound is a 
difficult task that requires sophisticated methods to 
determine the type of sound. Figure 1 illustrates the 
waveform and the time-frequency content representa-
tive spectrogram of a PCG cardiac cycle in both normal 
and pathological states.

Review of PGCs classification schemes

A thorough review of existing methods to classify 
heart sounds is out of the scope of this work. However, 
the 2016 PhysioNet/Computing in Cardiology Challenge 
(CinC) [3] and the release of one of the more extensive 
public databases of PCG recordings are a milestone in 
the field. To provide a literature review for PCGs classi-
fication algorithms, we can organize them into two 
main categories according to a) the feature extraction 
methods and b) the classification schemes used by 
each research paper.

For the first category, the feature extraction methods 
aim to represent the cardiac sound signals in different 
domains (time, frequency, and joint time-frequency, 
mainly), revealing the main physiological and patho-
logical PCG attributes to allow an effective feature 
extraction. Since the PCG signal is quasi-stationary, the 
features provided would be able to capture concurrent 
variations and the structural components in time, fre-
quency, and joint time-frequency domains. For these 
reasons, selecting an adequate feature extraction 
method is crucial for classifying heart sound signals. 
For instance, in the time-frequency domain represen-
tation of the PCG, researchers have chosen the short-
time Fourier Transform (STFT) [4][5][6], Wigner-Ville dis-
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tributions [7][8], the empirical [9], discrete [10], and contin-
uous Wavelet transform [11][12][13][14]. Among other fre-
quency domain features utilized for PCGs classifica-
tion, the Mel-Frequency Cepstral Coefficients (MFCCs) 
have been widely used as classification input features 
[15][16][17][18][19][20][21] since these parameters are the most 
popular to characterize the envelope information for 
audio signals successfully. The Linear Predictive 
Coefficients (LPCs) [22] have also been used to capture 
PCG signal spectrum patterns. The second category 
comprises the selection of a classification scheme 
which is essential since it is the final step of a PCGs 
murmur detection algorithm. The classifier takes the 
extracted features and interprets them by extracting 
and recognizing the functional patterns to efficiently 
represent the murmurs associated with diseases of a 
PCG signal. In the state-of-the-art, the reported classi-
fication schemes used are Support Vector Machines [8]

[16][23][24][25][26][27][28][29], k-Nearest Neighbors [16][30][31][32][33]

[34], and Random Forests techniques [14][35][36][37], in terms 
of conventional Machine Learning techniques. On the 
other hand, reported Deep learning-based methods for 
PCGs classification are comprised of ensembles of neu-
ral networks [15][17][38][39][40], convolutional neural net-
works (CNN) [6][13][21][41][42][43][44][45][46], long short-term 
memory networks (LSTM) [47][48][49], and recurrent neu-
ral networks (RNN) [50]. Although deep learning has 
emerged as a powerful approach that has shown prom-
ising advances in PCGs classification, there are still 
limitations due to the lack of data, carrying out train-
ing inefficiency, and insufficiently robust models [51][52]

[53]. Deep learning algorithms require significantly 
more computational resources and may not be feasible 
for machines with embedded or limited hardware 
capabilities. Deep learning algorithms might also pres-
ent a limitation called the exploding and vanishing 
gradient descent problem, which causes the classifica-
tion error rate to increase after attaining a minimum 
value. This deficiency is also known to cause model 
overfitting. Another limitation of deep learning is the 
lack of interpretability of the features to the point 
where it is impossible to discern what they are and 

have no physical meaning. While that may be a reason-
able price for the theoretical performance gain in some 
applications, we consider it vital to understand the 
physiological phenomena in PCG analysis.

This work aims to leverage sparse representations to 
classify heart sounds. More specifically, Matching 
Pursuit (MP) coefficients combined with LPCs and 
MFCCs as features feed our proposed high-perfor-
mance scheme that detects PCG abnormalities. We 
selected the Random Forest classifier as a classification 
algorithm due to its simplicity, low computational 
requirements, and excellent performance. The RF clas-
sifier is still used among researchers to detect patho-
logical states from heart sounds. However, it is note-
worthy that deep learning algorithms have signifi-
cantly improved in recent years and are now the 
default go-to choice for many problems, especially in 
computer vision and natural language processing 
fields. 

On the other hand, we used the Synthetic Minority 
Oversampling technique (SMOTE) to address the prob-
lem of unbalancing during the classification by creat-
ing synthetic samples for the minority class (abnormal 
or pathological PCG sound signals). The classification 
scheme's performance has been analyzed when the 
inputs are noisy PCG recordings. Finally, the work com-
pared the performance of two feature selection tech-
niques.

This paper presents our study's methodology, results, 
and conclusions, which aim to investigate the effec-
tiveness of using sparse and spectral features for PCG 
signal classification. The methodology section 
describes the methods we used to conduct our experi-
ments, including the selection of datasets, the choice 
of algorithms, and the evaluation metrics. The results 
section presents the findings of our investigations, 
including the performance of different algorithms and 
their comparison. Finally, in the conclusion section, we 
summarize our study's key insights and implications, 
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and the limitations and future research directions. 

MATERIALS AND METHODS
The main goal of this research is to evaluate the clas-

sification performance of different sets of features as 
input parameters of a classifier to accurately detect 
pathological states in PCG signals.  The Physionet/CinC 
2016 is the largest database of PCG signals publicly 
available to the scientific community [54] in order to 
evaluate algorithms to segment and classify PCGs. It 
comprises the merge of six different research groups of 
recordings from subjects under normal and various 
pathological cardiac conditions. Specifically, the data-
base includes 3,153 sounds recorded with a 2,000 Hz 
sampling frequency. Moreover, 2,488 samples come 
from cardiac sounds of subjects under normal condi-
tions, while 665 represent an abnormal category. 

In this paper, we conducted the methodology shown 
in the block diagram of Figure 2. For the preprocessing 
stage, the PCG signals were band-pass filtered between 
25-600 Hz using a sixth-order Butterworth filter; then, 
we applied a normalization procedure in amplitude, 
which consists of dividing the recording samples by 
the maximum value. The second stage comprises the 
extraction of FHS, since for these events in the follow-
ing step, different features will be extracted. The fea-
ture selection stage consists of reducing the number of 
features in order to know which of them are the most 
relevant and have the most information. Finally, in the 
training stage, we feed a classifier algorithm using the 
different sets of features to evaluate the classification 
performance of each one of them.

Matching Pursuit

The Matching Pursuit algorithm (MP), proposed by 
Mallat [55], is a greedy and iterative method that com-
putes a sparse representation of a signal s as a linear 
combination of Ma elementary waveforms called atoms 
with minimal error. Each atom ĝm belongs to a redun-
dant set of all possible predefined signals called dictio-
nary D. MP selects the best-correlated atom ĝm itera-
tively to provide a sparse decomposition in the follow-
ing way:

FIGURE 2. Block diagram to describe the sequence of 
methods to conduct the experiment of this paper.

𝒔𝒔 = # α! ⋅ 𝒈𝒈'! + 𝒓𝒓
"!

!#$

, (1) (1)

(2)

the atom that MP chooses at each iteration is the one 
that best matches the local signal structure of s by cal-
culating the maximum inner product between the sig-
nal and the dictionary: 

𝒈𝒈"! = argmax𝐠𝐠#!∈𝑫𝑫|〈𝒓𝒓, 𝒈𝒈"!〉| , (2) 

the weighting factor αm is a scalar that comes from the 
value of the inner product at each iteration: 
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α! = 〈𝒓𝒓, 𝒈𝒈'!〉, (3) (3)

(4)

(5)

r is a signal called the residual term. It comes from the 
difference between the signal and the weighted-se-
lected atom: 

𝒓𝒓 = 𝒓𝒓 − 𝛼𝛼! ⋅ 𝒈𝒈'!, (4) 

notice that at the beginning of the algorithm r=s. MP is 
called a greedy method to reconstruct sparse signals 
because it stops until a desired number of iterations (or 
atoms) Ma or the ratio between the original signal 
energy and the residual has been reached. The dictio-
nary selection is a crucial step for the MP decomposi-
tion into atoms. The dictionaries of Gabor functions 
have been widely used for the reconstruction of PCG 
signals due to the accurate signal representation in the 
time-frequency domain [56][57][58][59][60][61]; nonetheless, 
Gabor atoms are well-concentrated waveforms in both 
time and frequency. In this work, we use as a dictio-
nary a set of predefined multiscale functions, which is 
a collection D=UJ

j=1Dj of blocks Dj of time-frequency 
atoms at different scales. A Gabor atom in a multiscale 
dictionary is a waveform defined by the modulation, 
dilation, translation, and sampling of a continuous 
window wj(t) as:

𝒈𝒈!,#,$(𝑚𝑚) = 𝑤𝑤!'𝑚𝑚𝑇𝑇% − 𝑛𝑛𝑇𝑇!+	exp 0
2𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑇𝑇%

𝐾𝐾!
6	for 1 ≤ 𝑚𝑚 ≤ 𝑀𝑀 , (5) 

where the time location or window shift is defined as 
nTj, the window length or scale L_j and is modulated at 
a frequency k/K_j , where K_j is a predefined number of 
possible frequencies (according to the FFT size), T_s is 
the sampling period, and M the number of samples. 
Figure 3 shows the time waveform of a Gabor atom, 
which can be seen as a cosine-modulated Gaussian 
window. At the right panel, a couple of waveforms 
illustrate the effect of changing the modulation fre-
quency.after the frequency of the signal has been 
warped into the Mel scale, each Cn MFCC coefficient is 
calculated as follows:

FIGURE 3. Time waveform of a Gabor atom and its defined 
parameters. In the right panel, the waveforms illustrate the 

effect of changing the frequency parameter k/Kj.

Linear Predictive Coding

As seen in equation (1), MP decomposes a signal in 
two main parts, a linear combination of Gabor atoms 
and a residual. The residual term r is expected to be 
lowly correlated with the selected dictionary atoms. 
Thus, it must be expressed differently to be integrated 
as a feature representing the PCG signal. For this rea-
son, instead of reconstructing the temporal waveform, 
we propose to represent r using the Linear Predictive 
Coding technique [62], which approximates the signal's 
spectrum rather than the time domain waveform. The 
LPC representation is an all-pole filter where the resid-
ual r can be predicted as a linear combination of the 
previous samples:

𝒓𝒓! = −$ℎ"

#

"$%

𝒓𝒓!&" + 𝒆𝒆!, (2) (6)

where n=0,...,N-1, en is the final residual, and p is the 
filter order. Filter coefficients hi are added to the fea-
tures set. Published works in the literature review have 
used the LPC coefficients as features for the automated 
detection of heart murmurs in PCG signals [22].

Mel-Frequency Cepstral Coefficients 
(MFCCs)

The Mel-Frecuency Cepstral coefficients (MFCCs) are 
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the predominant features used for speech recognition 
[63], because they provide a compact and smooth repre-
sentation of the magnitude spectrum. MFCCs are based 
on the human hearing physiological structure since the 
human perception of the frequency content of sounds 
does not follow a linear scale. Thus, having a signal 
with a fundamental frequency f and an estimated pitch 
should be measured on a ranking called the Mel Scale. 
The MFCC coefficients are calculated by taking the dis-
crete cosine transform of a logarithmic spectrum after 
it was warped to the Mel scale as follows:

(8)

after the frequency of the signal has been warped into 
the Mel scale, each Cn MFCC coefficient is calculated as 
follows: 

𝐶𝐶! = # 𝐷𝐷"	
#!

"$%

𝑐𝑐𝑐𝑐𝑐𝑐 )𝑛𝑛 )
𝑚𝑚 − 0.5
𝑀𝑀&

1 𝜋𝜋1 , (4) 

Reported research frameworks have used MFCCs as 
features for PCGs classification [15][16][17][18][19][20][21], since 
they provide meaningful representations in the spec-
tral envelope rather than time features.

Random Forest Classifier

The random forest classifier (RF) comes from combin-
ing two or more decision tree classifiers. Each classifier 
uses a random vector sampled independently from the 
input vector and casts a unit vote for the most popular 
class. The features used are randomly selected to grow 
a tree. RF uses a bagging method to randomly replace 
the N examples of the original training set [64].

Let Θ be a random vector that chooses a random sub-
set x from the training set X. Let NT be the number of 
decision trees; each one has an additional parameter Θt 
and the ensemble of trees consists of the set {f1(x,Θ1 ),f2 
(x,Θ2),...,fNT(x,ΘNT)}. The RF algorithm attempts to 
reduce the variance of the model by averaging many 
trees estimates as follows: 

FIGURE 4. Triangular Mel Filter bank to extract MFCC 
coefficients used in this work. The frequency is shown at 
the top in the Mel Frequency and at the bottom in Hertz, 

respectively.

(7)Mel(𝑓𝑓) = 2595 ⋅ log!" .1 +
𝑓𝑓
7003,														(3) 

where Dm is the output of the k-th triangular filter bank 
channel and Mc is the number of filter bank channels. 
In our implementation, we use Mc=14 to cover the 
range from 20 Hz to 900 Hz. Figure 4 shows the repre-
sentation in the frequency domain (Hz and Mel scale) 
of the triangular filter bank used for the MFCC coeffi-
cients extraction.

𝒻𝒻!"(𝑥𝑥) =
1
𝑁𝑁#

(𝛼𝛼$

%!

$&'

𝒻𝒻$(𝒙𝒙, Θ$), (5) (9)

Where αt represents an associated weight. Because of 
its simplicity and promising results, the RF classifier 
has been widely used for PCG signals classification [14]

[65][66][67][68][69]. It is still a valuable method to detect heart 
murmurs accurately. For the experiments conducted in 
this research, we choose as hyperparameters a number 
of estimators Ne=100, and the Gini criterion to measure 
the quality of the splits.

The Synthetic minority oversampling tech-
nique (SMOTE)

Most PCG datasets around the reported research 
works contain more recordings from healthy people 
(commonly labeled as normal sounds) than people with 
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a heart pathology (commonly labeled as abnormal 
sounds). The training stage will be affected due to this 
unbalancing between class samples, causing overfit-
ting and highly biased results. The Synthetic minority 
oversampling technique is an algorithm that addresses 
the unbalancing problem by creating synthetic sam-
ples of the minority class. These synthetic samples are 
generated over the feature space rather than the data 
space. Each minority sample is created by taking the 
difference between the feature vector (input sample) 
and its nearest neighbor. The difference is then multi-
plied by a random number between 0 and 1 and added 
to the feature vector under consideration. The SMOTE 
approach effectively forces the decision region of the 
minority class to be more general, causing a better per-
formance in a classification that uses decision trees. It 
has been shown that SMOTE technique performs bet-
ter in accuracy than under-sampling methods [70].

Feature extraction

We have previously evaluated several time-frequency 
dictionaries to decompose the PCG, showing that Gabor 
wavelets accurately represent this signal [71]. For the 
experiments conducted in this research, the selected 
number of atoms was Ma=15 in order to reach almost 99 
% of the energy to reconstruct a PCG cycle. For the LPC 
analysis, the number of coefficients was p=15. For the 
MFCCs, we followed the suggestion proposed by some 
methods in the context of the Physionet Challenge [15][17]

[38], setting the number of coefficients as Mc=14. Figure 
5 provides a block diagram which describes the feature 
sets used in our experiments. We generated five fea-
ture sets labeled as follows by combining the MP, 
MFCC, and LPC approaches. Set A contains 90 features 
(i.e., columns of A data frame are 90) by merging the 
MP+LPC parameters, while set B contains the same 
extracted features as set A; however, they are extracted 
after performing cycle averaging. Set C consists of 146 
features after combining MP+MFCC+LPC, set D con-
tains 131 features after joining MP+MFCC. Set E con-
tains 56 features by considering only MFCC. The proce-

dure of feature extraction was conducted in MATLAB 
©. 

FIGURE 5. Block diagram of feature sets used in this work. In 
the first stage, we extracted M_a=15 atoms, with five 

parameters per atom yielding a total of 75 MP features. 
Using M_c=14 for each of the four states in the PCG cycle 

yields a total of 56 MFCC features. We defined p=15 as the 
number of LPC features.

Processing of the low-quality recordings

The database described at the beginning of this sec-
tion comes from the Physionet/CinC 2016 challenge. 
Data includes the PCG recordings, the FHS time seg-
mentation boundaries, a label indicating the patholog-
ical condition (normal/abnormal), and a quality refer-
ence of the PCG signal. According to the noise level in 
the sound samples, the database is divided into High-
Quality Recordings (HQR) and Low-Quality Recordings 
(LQR). Due to their highly noisy condition, there are 
279 signals labeled as LQR, and their FHS time seg-
mentation boundaries are not provided. Since most of 
the features are calculated per cardiac cycle, in the case 
of LQR the computation of the features was conducted 
by splitting the PCG in segments of Tμ + σT=1.15 s, 
where Tμ is the average cardiac cycle duration for the 
recordings labeled as abnormal and σT is the respective 
standard deviation. However, to compute the MFCCs 
each PCG segment was sliced into 4 windows according 
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to the average duration of the FHS [2].

RF classifier settings

We changed the number of estimators for the RF 
method to 100, as recommended in the presence of 
unbalanced datasets [72][73]. Specific details and param-
eter settings used during the evaluation are provided 
in previous work [74], where the RF classifier outper-
formed the others. This evaluation and all the classifi-
cation tests were conducted using the scikit-learn tool-
box under Python [75]. The experiments presented in 
this paper were conducted on a workstation with an 
Intel i7-9750H processor (2.60 GHz) and NVIDIA GPU 
GTX 1660Ti.  

The confusion matrix is a well-known method used to 
evaluate the performance of ML classification schemes. 
In our case, for a binary class problem (having normal 
and abnormal labels), the confusion matrix has four 
values:

-True positives (TP): number of correctly identi-
fied PCGs with a pathological condition.

-True negatives (TN): number of correctly clas-
sified PCGs that do not have a pathology.

-False positives (FP): number of PCG signals 
labeled as abnormal but classified as normal.

-False positives (FN): number of PCG signals 
labeled as normal but classified as abnormal.

For the experiments conducted in this research, we 
considered these quantities in order to calculate the 
following classification metrics:

(11)

(12)

• Accuracy (ACC) 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 × 100 ∈
[0	100]. (5) 

• Sensitivity (SE) 

𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 × 100 ∈
[0	100]. (6) 

• Specificity (SP) 

𝑆𝑆𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 × 100 ∈
[0	100]. (7) 

 
 

• Matthews Correlation Coefficient (MCC) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 × 𝐹𝐹𝑇𝑇

*(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
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FIGURE 6. Learning curves generated to evaluate the 
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TABLE 1. Results from the PCG sounds classification after 
splitting the recordings in High Quality (HQR) and Low 

Quality (LQR) labels.

necessary to implement a strategy to equalize the 
number of samples (rows of a data frame) for each class 
(i.e., to have the same number of samples labeled as 
normal or abnormal in each data frame). Most of the 
algorithms tackle this issue by randomly under-sam-
pling the majority class; however, the main drawback 
of this technique is that potentially useful information 
contained in the ignored samples is neglected. We 
address the unbalanced classes problem by adopting 
two strategies: dropping entities of the majority class 
and oversampling of the minority class using SMOTE 
[70]. In heart sound classification, obtaining new record-
ings labeled as abnormal is not a simple task (there will 
always be more healthy people). SMOTE allows us to 
use the already acquired data and create "new" samples 
in the feature space as if it were possible to access more 
pathological heart sounds. Table 1, section I shows the 
classification scores when using the input features 
from data frames A-E and comparing the abovemen-
tioned balancing techniques. When oversampling is 
applied, the SP, ACC, and MCC all increased, while SE 
has decreased.

Effects of signal quality on performance

We analyzed the influence of signal quality in the 
algorithm performance. According to the noise condi-
tion labels mentioned in the low-quality recordings 
subsection, we evaluated the signals tagged as HQR 
(2,874) and LQR (279) separately. The oversampling 
and under-sampling balancing procedures were also 
considered. Table 1 also presents the results for the 
HQR and LQR, respectively. As expected, the scores are 
generally higher for the HQR compared to the highly 
noisy recordings. A more detailed analysis of the results 
is provided in the following section.

Training time evaluation

To assess the practicality and efficiency of the pro-
posed schemes, we evaluated the training time of the 
algorithm. The results are shown in Figure 7; it can be 
seen that for 2,500 features in the training set, the com-
putation time is below 4 seconds. This result is unsur-
prising since the amount of data is relatively small to 
use more sophisticated and computationally expensive 
classification algorithms, such as Deep Learning meth-
ods.

 
Dataset Balancing SE SP ACC MCC Section 

A 

undersampling 

88.06 79.03 81.3 0.61 

I: 
HQR+LQR 

B 74.22 70.13 71.16 0.4 
C 93.72 83.27 85.9 0.7 
D 94.34 82 84.32 0.67 
E 91.2 84.12 86.69 0.72 
A 

oversampling 

71.07 94.07 88.28 0.68 
B 27.05 95.56 78.29 0.33 
C 81.14 95.98 92.24 0.8 
D 79.25 95.56 91.45 0.77 
E 77.99 92.59 88.91 0.71 
A 

undersampling 

76.99 82.47 81.39 0.52 

II: HQR 

B 65.49 72.51 71.13 0.32 
C 87.61 82.25 83.3 0.6 
D 61.95 92.86 86.78 0.57 
E 87.61 82.25 83.3 0.6 
A 

oversampling 

61.95 92.86 86.78 0.57 
B 28.32 95.89 82.61 0.34 
C 76.11 93.94 90.43 0.7 
D 78.76 94.16 91.13 0.72 
E 78.76 91.13 88.7 0.66 
A 

undersampling 

70 69.44 69.64 0.38 

III: LQR 

B 60 58.33 58.93 0.18 
C 80 86.11 83.93 0.65 
D 80 86.11 83.93 0.65 
E 85 75 78.57 0.58 
A 

oversampling 

55 75 67.86 0.3 
B 45 83.33 69.94 0.31 
C 75 94.44 87.5 0.72 
D 75 91.67 85.71 0.68 
E 70 83.33 78.57 0.53 

FIGURE 7. Time to fit/train the proposed algorithm and score 
or evaluate new instances. Results are shown for set C, 

since it contains the highest number of features.
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Feature selection

In order to keep the best parameters for classification 
and reduce overfitting and computational complexity 
in the proposed classification scheme, we implemented 
feature selection. There are features or variables in our 
data that are the most relevant, i.e., those that contrib-
ute the most to the output prediction. In the present 
work, we applied the Correlation Feature Selection 
(CFS) [76] and Information Gain (IG) methods [77] for this 
task. The reduced subset was constructed for the IG 
method, neglecting features that provided a null infor-
mation gain (zero). Table 2 shows the feature selection 
results, presenting the number of features before and 
after. The CFS method works significantly better 
regarding dimensionality reduction, keeping only 
between 12 and 30 features, while IG varies between 
50 and 116 attributes. 

TABLE 2. Number of features in the datasets A-E originally 
produced, then number of reduced features after applying 

CFS and IG feature selection.

This section presents the classification performance 
evaluation when using feature selection by comparing 
the Receiver Operating Characteristics (ROC) curves 
and the calculation of the Area Under the Curve (AUC) 
for each feature set. Figure 8 shows the ROC curves for 
feature sets A-E. In this case, features set D exhibits the 
best performance since it has an AUC=0.97, the highest 
score obtained. However, set C is relatively close, show-
ing AUC=0.969. This result suggests improving classifi-
cation performance when adding MP and LPC parame-

ters rather than only using MFCC or MP+LPC features. 
For cycle averaging, set B got the worst AUC score 
(0.79). 

Set Original Reduced CFS Reduced IG 

A 90 22 66 

B 90 20 65 

C 146 30 116 

D 131 22 101 

E 56 12 50 

 

In another experiment, the ROC curves and AUC cal-
culation was conducted when applying the CFS feature 
selection algorithm for each feature set, see Figure 9. 
There is an improvement in ACU scores since this met-
ric increases for all feature sets. However, features set E 
now shows the best performance with an AUC=0.967. 
Feature sets C and D present a close AUC score of 0.961 
and 0.967, respectively. On the other hand, although 
there is an increase from 0.76 to 0.867 for the AUC score 
of set B it is still the lowest obtained.  

FIGURE 8. ROC curves and AUC for feature sets A-D without 
feature selection.

FIGURE 9. ROC curves and AUC for feature sets A-D after 
applying Correlation Feature Selection (CFS).
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FIGURE 10. ROC curves and AUC for feature sets A-D after 
applying Information Gain Feature Selection (IG).

Finally, the same experiment was conducted but 
now using the features selected by the IG algorithm. 
Figure 10 shows the result. There is an improvement 
compared with results shown in Figure 9, when using 
CFS. However, feature sets C and D now show the best 
AUC score of 0.971, while in set D the AUC score is 
close (0.969). Set B is still presenting the worst ACU 
score (0.971).

Discussion

This work aimed to compare different feature 
extraction schemes based on spectral and sparse rep-
resentations for the automated classification of heart 
sounds. A low-cost system with accurate automatic 
analysis could prove very useful in assisting early 
diagnosis and improving the prognosis of patients 
with cardiovascular diseases. The Physionet/CinC 
2016 Challenge provides the research community 
with the largest open database of annotated heart 
sounds; the research presented in this paper employed 
this dataset. An algorithm performance comparison 
with a universally standardized database contributes 
to promoting advances in the field of automated heart 
sound analysis. Our key objective is to evaluate the 
performance of different feature extraction, balanc-
ing, and feature selection techniques that can be rele-
vant for effectively detecting heart murmurs. After 
thoroughly examining various classification schemes, 

we selected the RF method for its simplicity and high 
performance [69]. The main reason to use MP+LPC as 
features stems from the heart sound reconstruction 
model we have previously proposed [71]. This sparse 
time-frequency model accurately represents the 
non-stationary behavior of the FHS and murmurs. 
The de facto standard feature for sound recognition 
are the MFCCs; they have been extensively used in 
PCG classification. In this work, we analyzed the clas-
sification performance for MP+LPC+MFCC. Comparing 
datasets A and B, all the output scores for set A are 
always higher than B's. In our tests, the feature aver-
aging approach outperforms cardiac cycle averaging. 
We suppose that this fact results from the higher 
diversity produced when taking the mean value of the 
features rather than the direct calculation of the fea-
tures from a single averaged cycle. The atomic decom-
positions in MP were performed using MPTK, the 
Matching Pursuit Toolkit [78].

Although dataset A displayed a good score (with best 
sensitivity SE=88.5 %) using undersampling, dataset 
E presents better results (best sensitivity SE=91.19 %). 
That is, classification based only on MFCC features 
outperforms the MP+LPC approach. Nevertheless, a 
combination of features improves the results as shown 
by the scores of datasets C and D. The merger of 
MP+LPC+MFCC ranked second in sensitivity SE=93.17 
%, and dataset D (MP+MFCC) obtained the highest 
score (SE=94.34 %), both in case of using undersam-
pling. In terms of feature selection, performance 
improved in terms of the AUC and ROC curve scores, 
the best obtained when applying the IG method. 
Feature sets D and E got an AUC=0.971, while set C 
obtained an AUC of 0.969, which is closer than the 
other sets. Although CFS produces a higher reduction 
in the number of features than the IG method and 
better results, the AUC scores are lower than when 
applying IG.

CONCLUSIONS
In this work, we analyzed the effects of detecting 
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cardiac murmurs when applying the SMOTE oversam-
pling and random-under sampling methods for class 
balancing. Classification algorithms work best in 
cases where the number of samples is balanced. The 
reason is that they are designed to maximize accuracy 
and reduce error. SMOTE creates new abnormal PCG 
synthetic instances using the existing (real) ones. 
Although highly desirable, increasing the number of 
abnormal PCG sounds is a challenging task.

For this reason, we opted to use SMOTE. However, it 
is essential to be aware that this procedure might 
increase the likelihood of overfitting since it repli-
cates the minority class events. The obtained SE 
scores were higher for the case of undersampling. 
However, the remaining scores SP, ACC, and MCC 
were improved when applying SMOTE.

The selection of sparse and spectral features helps 
classify PCG recordings under a high noise level with-
out using FHS segmentation. For the group of LQR 
samples, the algorithm reached a SE=85% in feature 
set E applying under-sampling. On the other hand, the 
SMOTE oversampling effects produced lower scores in 
LQR when applying cycle averaging (data frame B). 
The best results were achieved when using all 
LQR+HQR samples of the dataset. 

Finally, we compared the effectiveness of our method 
when using information gain (IG) and correlation fea-
ture selection (CFS). The results after applying dimen-
sionality reduction were slightly higher using less 
features than when using the whole set of attributes. 
The highest sensitivity obtained was SE=96.23 % 
when using under-sampling and feature set C for both 
CFS and IG, and for feature set D when using CFS. 
After inspecting the discarded features, we noticed 
that the phase of the time-frequency atoms selected 
by MP is not a relevant feature. This parameter was 
never chosen when using CFS, and it obtained a value 
of IG=0. This result is not surprising since, in general, 
the phase is considered a random variable uniformly 

distributed in the [-π,π] interval. In contrast, most of 
the MFCC were selected by both IG and CFS, in this 
case the first coefficients were ranked higher than the 
last. Regarding the other time-frequency atom param-
eters, the frequency, length, and position play a sig-
nificant role in the classification. On the other hand, 
the amplitude has a low relevance. Only about a third 
of the coefficients were selected for the LPC without 
apparent order.

This research provides a complete assessment of fea-
ture selection methods for a classification algorithm 
to detect a pathological state from heart sounds. 
Different methods were evaluated, such as the bal-
ancing of samples, the comparison of MP+LPC vs. 
MFCC, and feature averaging vs. cycle time averaging 
as feature extraction methods. We also analyzed the 
effect of PCG signal quality and feature selection on 
classification performance. We selected the Random 
Forest technique algorithm to generate the classifica-
tion model for PCG signals because the amount of 
data available is still small. Classical machine learning 
algorithms can often perform better than deep learn-
ing algorithms since they require a large amount of 
data for training. Nonetheless, classical machine 
learning algorithms are preferred when the interpret-
ability of the model is essential since they are simpler 
and easier to understand [79]. 

The source code to reproduce the results of this 
paper can be downloaded free from; https://github.
com/roilhi/ABMEPaperPCGClassif.git/.
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