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ABSTRACT
This paper aims to introduce an innovative approach to semantic segmentation by leveraging a convolutional neural 
network (CNN) for predicting the shape and pose parameters of the left ventricle (LV). Our approach involves a 
modified U-Net architecture with a regression layer as the final stage, as opposed to the traditional classification 
layer. This modification allows us to predict all the shape and pose parameters of a statistical shape model, including 
rotation, translation, scale, and deformation. The adapted U-Net is trained using data from a point distribution model 
(PDM) of the LV. The experimental results demonstrate a mean Dice coefficient of 0.82 on good quality images, and 
0.66 including mean and low-quality images. Our approach successfully overcomes a common issue encountered in 
CNN-based semantic segmentation. Unlike the inaccurate pixel classification that often leads to unwanted blobs, our 
CNN generates statistically valid shapes. These shapes hold significant potential in initializing other methods, such 
as active shape models (ASMs). Our novel CNN-based approach provides a novel solution for semantic segmentation, 
offering shapes and pose parameters that can enhance the accuracy and reliability of subsequent medical image 
analysis methods.
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RESUMEN 
Este artículo tiene como objetivo introducir un enfoque innovador para la segmentación semántica utilizando una red 
neuronal convolucional (CNN) para predecir los parámetros de forma y posición del ventrículo izquierdo (VI). Nuestro 
enfoque implica una arquitectura U-Net modificada con una capa de regresión como etapa final, en contraposición 
a la capa de clasificación tradicional. Esta modificación nos permite predecir todos los parámetros de un modelo 
estadístico de formas que incluyen rotación, traslación, escala y deformación. La red convolucional se entrena 
utilizando datos de un modelo de distribución de puntos (PDM) del VI. Los resultados experimentales muestran un 
coeficiente Dice promedio de 0.82 para imágenes de buena calidad y de 0.66 cuando se incluyen imágenes de calidad 
media y baja. Nuestro enfoque supera con éxito un problema común en la segmentación semántica basada en CNNs. 
A diferencia de la clasificación inexacta de píxeles que a menudo conduce a elementos no deseados (blobs), nuestra 
CNN genera formas estadísticamente válidas. Estas formas tienen un gran potencial para inicializar otros métodos, 
como los modelos de forma activa (ASMs). En resumen, nuestro enfoque basado en CNN proporciona una solución 
innovadora para la segmentación semántica, ofreciendo formas y parámetros de posición que pueden mejorar la 
precisión y confiabilidad de otros métodos de análisis del VI.

PALABRAS CLAVE:  análisis estadístico de forma, ecocardiografía, redes neuronales convolucionales, segmentación del 
ventrículo izquierdo 
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Left ventricle (LV) segmentation in ultrasound images 
is a crucial process for evaluating the ejection fraction 
and assessing heart condition. Ultrasound offers real-
time imaging with moderate costs and no ionizing 
radiation. However, image quality is affected by speckle 
noise and acoustic shadows of adjacent structures. For 
these reasons, several automatic and non-automatic 
methods have been developed to perform the segmen-
tation of the LV in ultrasound images.

Some of the main approaches to LV segmentation 
have been active contours, such as geodesic models [1] 

and level sets [2], deformable templates, such as shape 
models [3] registration-based methods [4], and super-
vised learning models such as data base guided seg-
mentation [5], and hybrid active appearance models [6]. 
International challenges have contributed to the publi-
cation of large image databases that enable the training 
and testing of supervised learning models [7]. Machine 
learning models have shown high performance in the 
segmentation of the LV in echocardiography in 2D and 
3D, taking advantage of the public image databases. An 
example of a machine learning method for LV segmen-
tation is reported in [8]. A structured random forest was 
developed for automatic segmentation of the myocar-
dium and the LV on an echocardiographic data set of 
250 patients, including healthy athletes and cardiac 
patients. The random forest showed improved segmen-
tation results when compared against an active appear-
ance model.

Statistical shape models (SSMs) and active shape 
models (ASMs) [9] have been extensively used, with 
continuous improvements. An enhanced ASM, as 
reported in [10], incorporates an adaptive strategy to 
construct appearance models of each landmark point, 
optimizing the number of principal components (PCs) 
using mean squared eigenvalue error (MSEE). 
Preprocessing with a Nakagami filter further improved 
segmentation results on good quality images from the 
CAMUS dataset. However, details on the ASM's initial-

ization method were not provided in the study.

Recently deep learning methods have been applied 
with good results for the segmentation of the LV. In [11] 
is presented a review of the application of convolu-
tional neural networks (CNNs) to the segmentation of 
the LV in ultrasound and MRI. Fully convolutional [12] 

and the U-Net architecture [13][14][15] have been success-
fully applied to the classification of the pixels corre-
sponding to the LV; Different SSMs such as morpholog-
ical models, snake models, and ASMs have been com-
bined with CNNs to create hybrid architectures in dif-
ferent studies. In [16] is reported a hybrid method with 
a fast region-based CNN and an ASM for LV segmenta-
tion in ultrasound images where adaptive anisotropic 
diffusion filtering is applied to all images, the fast CNN 
detects the bounding box around the LV for ASM ini-
tialization and the ASM finds the final boundary of the 
LV. On the other hand, new CNN architectures have 
been developed for the adjustment of a shape contour. 
In [17] is reported a new approach for left ventricle seg-
mentation based on a CNN that first, detects 3 land-
marks: apex, starting and, end points of the endocar-
dium; Afterwards, a triangle (start-apex-end point) is 
used as initialization for a deep-snake [18] which is 
adjusted to the endocardium using circular convolu-
tion, good results were obtained in the HMC-QU echo-
cardiography data set. Also, convolutional neural net-
works based on autoencoders such as U-Net [19], have 
shown good results when performing segmentation 
with reduced training sets; however, this type of net-
work has a great disadvantage as they are based on 
semantic segmentation, they produce areas (blobs) 
with an inaccurate classification that are sometimes 
far from the organ to be segmented (see Figure 1).

In this work, is reported a modified U-Net based 
architecture, which incorporates expert shape knowl-
edge of the LV in a point distribution model (PDM) [9], 
this approach diverges from the conventional pixel by 
pixel classification method discussed in [19]. Our model 
focuses on generating statistically valid shapes for the 
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FIGURE 1. Example of inaccurate classification by the U-Net 
generating blobs that are not part of the left ventricle.

FIGURE 2. Workflow of the proposed method.

FIGURE 3. Landmark sampling of each left ventricle shape in 
the training set.

left ventricle (LV). This alternative segmentation strat-
egy avoids the production of blobs due to pixel classi-
fication errors. Our work contributes to improve the 
reliability of LV segmentation. The training error of 
the proposed CNN was calculated as the RSME between 
the expert pose and shape values and the CNN output 
at each epoch. During the test stage our U-Net model 
optimizes the shape and pose parameters correspond-
ing to a non-training ultrasound image of the LV. In the 
following sections are presented all the details of the 
PDM of the LV, the U-Net architecture developed and 
its training parameters. In section III are reported the 
tests and results on the CAMUS [20] and EchoNet-
Dynamic [21] databases. In section IV are presented the 
discussion and conclusions.

MATERIALS AND METHODS
This section presents the proposed methodology. As 

can be observed in Figure 2, the methodology starts 
with the training of a U-Net convolutional network, 
which is fed with a set of echocardiography images 
(Figure 2a-2b). The target is to estimate the parameters 
of translation, rotation, scale, as well as a deformation 
vector (Figure 2c), which are useful to adjust the mean 
shape obtained from the PDM, and thus perform the 
segmentation of the left ventricle in the systole and 
diastole phases (Figure 2d). Finally, the proposed 
methodology is validated using the Dice coefficient 
and the Haussdorff distance. The details of each stage 
are explained in the following subsections.

Point distribution models 
Point distribution models (PDMs) have been widely 

used for modeling complex structures, such as the 
organs of the human body [9][22] and specifically in this 
paper the left ventricle. The model is based on a set of 
points known as “landmarks”, which must be a fixed 
number and should correspond to the same position 
along the contour of each example in the training set, 
as shown in Figure 3. 

A shape vector is constructed by concatenation of all 
the [x,y]  coordinates of the landmarks of each training 
shape. Subsequently, with this set of landmarks, the 
mean shape       is calculated as proposed by Cootes et 
al., [9], and the training set is aligned following the 
Procrustes algorithm [23]. Finally, a principal compo-
nent analysis (PCA) is performed on the covariance 
matrix of this set, obtaining the shape parameters 
(P,b) according to the 90 % of the explained variance, 
thus enabling the generation of new instances of the 
left ventricle, as described in Equation (1). 



144 REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA VOL. 44 | NO. 4 | SPECIAL ISSUE 2O23 

Shape and pose parameters.
In this work we constructed a PDM of the left ventricle 

with the purpose of modeling the deformation of each 
shape in the training set. The deformation of the PDM 
for each left ventricle shape can be calculated by solv-
ing for b in Equation 1, which yields Equation 2, where 
b contains the shape parameters of each training shape. 
The pose parameters (rotation, translation in X, transla-
tion in Y and scale) were obtained as follows: for each 
of the contours in the training set the rotation and scale 
were computed as suggested in [9] while translation in X 
and Y were calculated as the average value in each axis, 
on each training example.

𝑥𝑥 = 𝑥𝑥 + 𝑃𝑃𝑃𝑃   (1) 

Where: 

𝑥𝑥 = 𝑛𝑛𝑛𝑛𝑛𝑛	𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑛𝑛. 

𝑥𝑥 = 𝑚𝑚𝑛𝑛𝑎𝑎𝑛𝑛	𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑛𝑛.  

𝑃𝑃 = 𝑎𝑎𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝	𝑛𝑛𝑝𝑝𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝	𝑚𝑚𝑎𝑎𝑒𝑒𝑝𝑝𝑝𝑝𝑥𝑥.  

b = deformation parameter vector. 

(1)

𝑏𝑏 = (𝑥𝑥 − 𝑥𝑥) ∗ 𝑃𝑃′    (2) (2)

U-Net with statistical shape restrictions
We adapted a convolutional neural network architec-

ture that uses the features extracted by the convolu-
tional filters to predict the values of shape and pose of 
the PDM of left ventricle in this way, all segmentations 
are valid shapes restricted by the training of the net-
work, thus avoiding the blobs shown in Figure 1. The 
ultimate goal of this CNN is to predict the values of 
rotation, translation, scale and the deformation vector 
b corresponding to a given ultrasound image of the left 
ventricle.

Network architecture
To provide a better understanding of the proposed 

U-Net architecture (see Figure 4), it will be divided into 
4 blocks:

1. Input block: Is an image input layer of size 
256x256x1 of the form: (width, height, channels).

2. Encoder - Decoder block: The encoder block is 
formed by convolutional filters of size 3x3 and its 
goal is to extract relevant features of the image, also 
the encoder path reduces the spatial resolution of 
the extracted feature maps applying maxpooling 
operations. On the other hand, the decoder path 
upsamples the features maps and preserves the spa-
tial resolution of the input while also performs con-
volutional operations. By employing the skip con-
nections from the encoder, the decoder layers 
enhance their ability to detect and fine-tune the 
features within the image as explained in [19].

3. Fully connected block: It consists of a flatten 
layer followed by a set of fully connected layers. The 
purpose of this block is to link the features extracted 
by the encoder-decoder block with the shape and 
pose parameters related to the input image. 

4. Output block: Finally at the end of the fully con-
nected block is a regression layer that allows to pre-
dict the desired parameter: rotation, translation, 
scale, or b-vector.

Network Training
Using the pose and shape parameters described above, 
an input vector was constructed for each training 
image Ii  as follows in Equation (3):

𝑉𝑉! = [𝐼𝐼!	𝜃𝜃! , 𝑥𝑥! , 𝑦𝑦! , 𝑠𝑠! , 𝑏𝑏!]     (3) 

Where: 

𝐼𝐼! 	= 	𝑡𝑡ℎ𝑒𝑒	𝑖𝑖 − 𝑡𝑡ℎ	𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒	𝑜𝑜𝑜𝑜	𝑡𝑡ℎ𝑒𝑒	𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖	𝑠𝑠𝑒𝑒𝑡𝑡. 

𝜃𝜃!= the i-th rotation value. 

𝑥𝑥! = the i-th x translation value. 

 𝑦𝑦!= the i-th y translation value. 

𝑠𝑠!= the i-th scale value. 

𝑏𝑏!= the i-th deformation vector. 
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The vector Vi then becomes the input of the proposed 
CNN, the intention of training a U-Net architecture is to 
take full advantage of its ability to extract features 
throughout the encoder stage, the idea is then to use 
these features to predict the values of pose and shape 
of the left ventricle, assuming that each LV image cor-
responds to a single contour and these are never the 
same between patients. Also the network loss during 
the training stage is calculated as the RMSE between 
the values of shape and pose predicted by the network 
(as output from the regression layer) and the ground 
truth contained in each training vector Vi through an 
iterative process called: stochastic gradient descent 
(SGD) the network adjusts its weights according to the 
values of the loss trying to decrease it in each iteration, 
the lower the loss the better the prediction of the pose 
and shape values.

Predicted shape reconstruction
Once the network has been trained, it is possible to 

predict the values of θ,Tx,Ty,s and b following the dia-
gram in Figure 2. These values allow reconstructing 
the LV contour corresponding to the input image, first 
by applying b and P to the mean shape        to obtain the 
deformation of the left ventricle (see Equation 2) and 
then by multiplying the resulting shape       by the trans-
formation matrix in Equation 4, thus obtaining the 
reconstructed LV shape (S). Finally, S is placed in the 
input image to obtain the corresponding LV segmenta-
tion.  

𝑆𝑆 = 𝑥𝑥𝑠𝑠 &𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 - + [𝑇𝑇𝑥𝑥, 𝑇𝑇𝑇𝑇]  (4) 

Where: 

𝑐𝑐 = 𝑡𝑡ℎ𝑒𝑒	𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠	𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑠𝑠𝑐𝑐𝑡𝑡𝑒𝑒𝑝𝑝	𝑏𝑏𝑇𝑇	𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

𝑠𝑠 = 𝑡𝑡ℎ𝑒𝑒	𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑒𝑒	𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑠𝑠𝑐𝑐𝑡𝑡𝑒𝑒𝑝𝑝	𝑏𝑏𝑇𝑇	𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

[𝑇𝑇𝑥𝑥, 𝑇𝑇𝑇𝑇] = 𝑡𝑡𝑡𝑡𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠	𝑡𝑡𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠 

𝑣𝑣𝑟𝑟𝑠𝑠𝑐𝑐𝑒𝑒𝑠𝑠.  

Validation
To validate the proposed method, we used two mea-

sures:

1. Dice Coefficient: This method allows us to 
determine the area of overlap between the seg-
mentation mask of the expert and the segmenta-
tion mask of our method. A higher overlap area 
corresponds to a higher Dice coefficient value. 
Therefore, the larger the  coefficient value, the 
better the segmentation. This coefficient is within 
the range of 0 to 1.

2. Haussdorff Distance: It measures the distance 
between two sets of points. In this case, it mea-
sures the distance between the contour marked by 
the expert and the contour reconstructed with the 
network values. A smaller Haussdorff distance 
indicates a greater similarity between the two con-
tours.

RESULTS AND DISCUSSION
This section presents how the training and test data-

set were created, the CNN training parameters and 
the segmentation results obtained by the CNN 
reported in this paper. It is also important to mention 
that the data extraction and image preprocessing 
were performed in Python 3.7, while the develop-
ment, training and testing of the proposed network 
were done using MATLAB 2022b.

Training dataset
A set of 800 images (400 systole and 400 diastole) 

were randomly selected from the CAMUS database 
[20], this set includes images of good, regular, and poor 
quality, then, data augmentation modifying rotation, 
translation, scale, brightness, and contrast was 
applied to achieve a total of 4800 training images an 
example of these images is shown in Figure 5.  With 
the use of data augmentation, we managed to attain 
greater diversity in the training set and, consequently, 
enhance the generalization achieved by the network.

(𝑥𝑥") 
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Test dataset
The test set used to evaluate our method was divided 

into 2 parts: the first consists of 98 images from the 
CAMUS database, comprising 49 systole images and 49 
diastole images (hold-out set). The second part consists 
of non-training images from the EchoNet-dynamic 
database [21], these images were extracted from .AVI 
videos at the end of the systolic and diastolic cycles. 
The task was done by Cervantes – Guzmán in [24]. The 
above-mentioned images were subsequently anno-
tated by an expert and the segmentation masks were 
obtained. The total number of systole images is 207, 
while for diastole, it is 211. It is worth noting that the 
resolution of the images from the EchoNet-dynamic 
database is 112x112 pixels, so they were scaled to 
256x256, the resolution at which the proposed network 
is trained.

FIGURE 4. Proposed U-Net architecture.

FIGURE 5. Examples of good, regular and bad quality images 
from the CAMUS database.

CNN training parameters
The training parameters for the CNN were defined as 

follows:  

• Training Images = 4560 images.
• Validation images = 240 images.
• Number of epochs = 20.
• Learning rate = 0.0001.
• Batch size = 32.
• Encoder depth = 3.
• Start filters = 64.

A batch size of 32 images is generally manageable on 
most modern GPUs, ensuring efficient use of hardware 
resources without causing memory issues. Additionally, 
this batch size introduces a moderate amount of noise 
in the gradient updates, providing some regularization 
effects without being too small. Empirical tests were 
conducted, and the training time was found to be 
acceptable, with the model converging effectively 
without overfitting. Additionally, the mean squared 
error (RMSE) was used as the loss function since the 
final layer of the network is a linear regression layer. 
Therefore, the RMSE tends to penalize larger errors 
more significantly, leading to better weight adjust-
ments in the network compared to accuracy. The aver-
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age RSME in the training stage was: 9.86.

This architecture was implemented on a PC with 32 
GB of RAM, GPU NVIDIA Tesla K40c and a NVIDIA 
Tesla T4 working in parallel into an Ubuntu server 
environment.

PDM training parameters
• Training Images = 4800 images.
• Number of landmarks per example = 64.
• Explained variance = 0.9.

These parameters were selected as follows, the num-
ber of landmarks (64) are a good point density number 
and can represent the LV contour with good quality as 
depicted in Figure 6; normally the explained variance 
as proved in [9] is about 90 %, thus characterizing the 
most significant shape information provided by the 
PCA. Finally, the training set was the same as the one 
selected for the CNN training.

FIGURE 6. Example of landmarks sampled in the LV training 
images.

FIGURE 7. Systole CNN LV shape segmentations (red) vs. 
ground truth (green) for CAMUS database.

FIGURE 8. Diastole CNN LV shape segmentations (red) vs. 
ground truth (green) for CAMUS database.

Segmentation results
In this section, we present the results obtained by our 

method on the test dataset. In Figures 7 and 8, are 
shown examples of image segmentation results for the 
CAMUS database during systole and diastole. Figures 9 
and 10 illustrate the segmentation for both phases 
using images from the EchoNet Dynamic database. 
Additionally, Table 1 displays the average Dice coeffi-
cients for both test sets. Subsequently, Table 2 com-
pares our method against others described in [20] and 
[22]. The average Dice value in this table represents the 
average obtained from the CNN on the CAMUS dataset 

only. Furthermore, we decided to categorize the 
obtained segmentations based on their Dice coefficient 
into three categories: good, regular, and bad. The 
threshold used for this categorization is shown in Table 
3. Meanwhile, in Figure 11a and 11b, the median for 
each category is observed for systole images from the 
CAMUS and EchoNet-Dynamic databases. Figures 11c 
and 11d display the median for each category for dias-
tole images in the mentioned databases.
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FIGURE 9. Systole CNN LV shape segmentations (red) vs. 
ground truth (green) for EchoNet-dynamic database.

TABLE 1. Mean Haussdorff distance and mean Dice results for CAMUS and EchoNet-dynamic database

TABLE 2. Comparison between the proposed U-Net versus other shape-based LV segmentation works

TABLE 3. Category classification by Dice coefficient

FIGURE 10. Diastole CNN LV shape segmentations (red) vs. 
ground truth (green) for EchoNet-dynamic database.

 

 

 CAMUS database EchoNet-dynamic database 
Metric Systole Diastole Systole Diastole 

Haussdorff distance (px) 25.92 37.55 28.95 31.20 

Dice coefficient 0.71 0.66 0.64 0.65 
Revista Mexicana de Ingeniería Biomédica 

  

 

 

Method Mean Dice coefficient systole Mean Dice coefficient diastole 
BEASM-SEMI [20] 0.86 0.92 

BEASM-FULLY [20] 0.82 0.87 
ASM [22] 0.82 0.81 

FMR-ASM [22] 0.83 0.80 
Proposed U-Net 0.71 0.66 
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Category Threshold 
Good Dice coefficient > = 0.80 

Regular 0.70 < = Dice coefficient < = 0.79 
Bad Dice coefficient < = 0.69 

Results analysis
In this section, we discuss the results presented in the 

previous section. The first point to address is the per-
formance of our U-Net, both for the CAMUS database it 
was trained on and the EchoNet-dynamic database, 
which contains completely new images for the network 

to segment. As observed in Figures 11a – 11d, the per-
formance is very similar, which suggests that there is 
no significant overfitting due to data augmentation. 
We can also understand that the performance of the 
"good" category is competent in both cases (CAMUS 
and EchoNet-dynamic) with respect to the results pre-
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sented in [20]. On the other hand, in Figures 7 to 10, it is 
evident that all segmentations produced by our method 
show shape characteristics very similar to those of the 
left ventricle (LV). They exhibit smoothed shapes 
located on the correct side of the image, with scale and 
rotation close to the expert annotation. Even in the 
case of poor segmentations (see Figure 12), the obtained 
contours preserve the shape qualities of the left ventri-
cle. This is the effect achieved by the statistical shape 
constraint arising from training the network with 
parameters derived from a PDM of the LV. This rep-
resents an advantage over convolutional networks 
based on semantic segmentation, which, when they 
fail, produce classification errors like the one shown in 
Figure 1. Such misclassifications are challenging to 
correct since contour extraction yields noisy shapes 

and sometimes contours are located far from the LV, a 
situation in which our method proves to be more 
robust. Another point to consider, which impacts our 
method, is the quality of the images. If ultrasound 
already poses a significant challenge due to speckle 
noise, the images acquired in both databases are not of 
the highest quality. This affects the segmentations 
obtained by our method and makes it difficult to find 
the optimal features corresponding to the pose and 
shape values during the network training hence the 
low Dice average in the tests performed. However, 
unlike semantic segmentation, these segmentations 
can be corrected by some other method that performs 
a LV contour fine-tuning. 

FIGURE 11. Median of each category for systole (11a, 11b) and diastole segmentations (11c, 11d) in CAMUS and EchoNet-dynamic 
database.
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FIGURE 12. Diastole CNN LV shape segmentations (red) vs. 
ground truth (green) for EchoNet-dynamic database.

CONCLUSIONS
In this paper we presented an alternative way to the 

use of CNNs for LV shape and pose parameter predic-
tion, taking advantage of convolution layers to find 
features extracted from the ultrasound image, result-
ing in segmentations with statistically valid shapes as 
the network is trained with the shape parameters of a 
PDM.  Although, currently, the overall segmentation 
accuracy is not high, when high quality images are 
selected the accuracy of our method compares favor-
ably to other previously published work. Our method 
avoids the appearance of blobs, and the fact that the 
segmentation is always a statistically valid shape allows 
it to be used as an initialization mechanism for another 
method to perform an adjustment and improve the 
segmentation starting from a smoothed shape and not 
from a noisy shape and in some cases far from the ven-
tricle, as it would be the case with the extraction of the 
contour of a semantic segmentation CNN. In conclu-
sion, this method explores the possibility of generating 
segmentations with statistical shape restrictions using 
the power of CNNs and can also be used as an auto-
matic initialization method to later fine tune the pre-
dicted LV segmentation.
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