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ABSTRACT  
Managing infections within populations poses significant challenges, particularly in achieving controllability over 
nonlinear models within epidemiological systems. In this study, the challenge is addressed by introducing a novel 
control function tailored to enhance the management of infections. The approach revolves around leveraging 
a nonlinear SIR epidemiological model, enabling the derivation of explicit solutions and fine-tuning of control 
parameters to align with predefined objectives. Specifically, the focus lies on guiding the number of infected 
individuals towards a predetermined threshold at a specified time for all initial values. Through rigorous numerical 
simulations, the effectiveness of the proposed control strategy in achieving greater controllability and regulating the 
spread of infection over time is depicted, For example, our simulations show that starting with an initial infected 
population of 150 individuals in a population of 25,150, the control strategy can reduce the number of infected 
individuals to below 40 within 30 days. The quantitative results presented underscore the efficacy of the approach, 
highlighting its potential to significantly impact disease management strategies.   
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INTRODUCTION
Controllability stands as a cornerstone concept within mathematical control theory, constituting a qualitative 

property essential for understanding dynamical control systems. At its core, controllability signifies the capacity 
to guide a dynamical system from any starting point to a specified end state utilizing admissible controls. However, 
it’s worth noting the diverse range of definitions attributed to controllability in the literature. These definitions 
vary depending on the class of dynamical systems considered and the characteristics of the admissible controls 
involved [1][2]. 

Addressing controllability across different dynamical systems demands the application of various mathematical 
tools and theories. These encompass principles drawn from a variety of mathematical disciplines, such as func-
tional analysis, matrix analysis, differential geometry, topology, ordinary and partial differential equations, and 
difference equations [3][4]. Despite the breadth of methods available, there remain numerous unresolved challenges 
in controllability analysis, particularly concerning nonlinear types of dynamical systems  [1][5].

For instance, much of the existing literature on controllability has predominantly focused on unconstrained con-
trols without delays in either the state variables or the controls themselves. This emphasis underscores the need for 
further exploration and development of controllability concepts tailored to address more intricate dynamical sys-
tems with constrained controls and temporal delays [6].

Nonlinear models play in epidemiology a vital role for comprehending the dynamics of disease transmission 
within populations. By translating biological principles and epidemiological data into mathematical equations, 
models can simulate the spread of diseases, predict future trends, and evaluate the potential impact of interven-
tions [7][8][9][10]. Epidemiological models often incorporate factors such as transmission rates, population demograph-
ics, immunity levels, and behavioral patterns to capture the complexities of disease transmission. These models can 
help public health authorities develop effective strategies for disease control and prevention, such as vaccination 
campaigns, quarantine measures, and social distancing policies [11][12][13][14]. Additionally, mathematical modeling 
enables researchers to assess the effectiveness of various intervention strategies under different scenarios, provid-
ing valuable insights for decision-making in public health emergencies [11][13][14].

The SIR model, which stands for Susceptible-Infectious-Recovered, is a fundamental mathematical framework 
used in epidemiology to understand and forecast the dissemination of infectious diseases within populations. In 
this model, the individuals are classified into three compartments: (S) susceptible, (I) infectious, and (R) recovered. 
Susceptible persons (S) are those who are at risk of contracting the disease but have not been infected yet. Infectious 
individuals (I) are those who are presently infected and capable of transmitting the disease to susceptible individ-
uals. Recovered individuals (R) are those who have recovered from the infection and gained immunity, thus they 
cannot be infected again and do not contribute to disease transmission [15][16][17][18].

The dynamics of the SIR model are governed by a system of ordinary differential equations (ODEs) that describe 
how the number of individuals in each compartment changes over time. These equations capture the flow of indi-
viduals between compartments based on the rates of infection and recovery. Specifically, susceptible individuals 
become infected at a rate proportional to the number of susceptible individuals and infectious individuals, while 
infectious individuals recover at a certain rate.
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By solving these differential equations, the SIR model can provide insights into the dynamics of disease spread, 
such as the peak of the epidemic, the total number of infections, and the effectiveness of interventions such as 
vaccination or social distancing measures [18].

While the basic SIR model assumes certain simplifications and does not account for demographic factors like births 
and deaths, it remains a valuable tool for understanding the fundamental principles of infectious disease dynamics 
and informing public health decision-making. Here, we focus on diseases characterized by the SIR model, espe-
cially in situations with large populations or limited demographic data availability, which is described by the fol-
lowing set of equations (Equation 1, Equation 2, and Equation 3):

𝑆𝑆!(𝑡𝑡) = −
𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)

𝑁𝑁 																																 

𝐼𝐼!(𝑡𝑡) =
𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)

𝑁𝑁 − 𝑔𝑔𝐼𝐼(𝑡𝑡) − 𝑢𝑢(𝑡𝑡)𝐼𝐼(𝑡𝑡) 

𝑅𝑅!(𝑡𝑡) = 𝑔𝑔𝑔𝑔(𝑡𝑡) + 𝑢𝑢(𝑡𝑡)𝑔𝑔(𝑡𝑡) 

(1)

(2)

(3)

Where β represents the transmission rate, denoting the speed at which susceptible individuals contract the infec-
tion upon exposure to infectious individuals, g is the recovery rate, denoting the rate at which infectious persons 
recover from the disease and become immune. u is the control variable representing the treatment or intervention 
applied to infectious individuals. N is the population size given by N=S+I+R which is constant.

In many disease control strategies, the primary objective is to minimize the number of infected individuals over 
time, aiming for the long-term eradication of the disease. However, in certain scenarios, achieving this goal may 
take an extended period [11], rendering it insufficient for immediate containment. In our work, we address this chal-
lenge by focusing on the design of a control mechanism that not only aims to reduce the overall number of infec-
tions but also ensures that the number of infected individuals falls below a predetermined threshold within a spe-
cific desired time-frame. This approach is particularly crucial in situations where rapid containment is necessary to 
prevent further transmission and mitigate the impact of the disease outbreak.

MATERIALS AND METHODS

Proposal
The ability to exert control over complex systems, particularly nonlinear ones, holds paramount importance 

across various fields [2][6], with epidemiology being no exception [19]. Within the domain of epidemiological models, 
achieving controllability assumes a pivotal role, signifying the capability to effectively manage and manipulate 
the dynamics of infectious diseases within populations.

An essential aim of infectious disease epidemiology is to comprehend and measure the effort necessary to control 
or manage outbreaks effectively. This encompasses not only the identification of strategies to curb the spread of 
diseases but also the quantification of resources, interventions, and policies needed to achieve containment. 
Moreover, assessing the efficacy of these efforts plays a crucial role in informing public health decisions and policies 
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aimed at minimizing the impact of infectious diseases on populations [19].

During disease outbreaks, authorities often implement a range of control measures, including quarantine, social 
distancing, and vaccination campaigns, for predefined durations to curtail the spread of the disease and mitigate 
its adverse effects on public health [19]. These measures’ durations (days or months) are typically predetermined 
based on comprehensive epidemiological projections, modeling studies, and expert recommendations, ensuring a 
coordinated and efficient response to the outbreak. Additionally, institutions such as the World Health Organization 
(WHO) may establish thresholds for specific infectious diseases, considering factors like transmission characteris-
tics, severity, and healthcare resource availability [20][21]. These thresholds serve as vital benchmarks for assessing 
the risk level of disease transmission within a population.

In this study, we investigate the concept of epidemiological controllability, focusing on the development of control 
strategies to steer the dynamics of infection within populations. Our objective is to design control mechanisms 
capable of guiding the number of infected individuals toward predetermined thresholds at specified times. This 
approach aims to enhance our ability to manage and contain infectious outbreaks effectively.

Then, we propose the following novel control law in Equation 4:

𝑢𝑢(𝑡𝑡) = 	
𝛽𝛽𝑆𝑆!
𝑁𝑁 𝑒𝑒

"#!(%&')
'()&*)+×-./

'&0"($%&)
(%&')0"($%&)1 − 𝑔𝑔 +

(𝑔𝑔 + 𝜖𝜖)𝑒𝑒(*&))2

𝑒𝑒(*&))2 + 𝑎𝑎
			 

𝑢𝑢(𝑡𝑡) =
𝛽𝛽𝑆𝑆!
𝑁𝑁 )

𝑎𝑎 + 𝑒𝑒"($%&)

(1 + 𝑎𝑎)𝑒𝑒"($%&)
.

()!(*%+)
+($%&),

− 𝑔𝑔 +
(𝑔𝑔 + 𝜖𝜖)𝑒𝑒(&%$)"

𝑒𝑒(&%$)" + 𝑎𝑎
 

(4)

(5)

or, using the laws of exponents, we get the Equation 5:

where S0 denotes the initial number of susceptible individuals in the population at the onset of the control inter-
vention, and N is the population size. The parameters a and ϵ, both positive constants, play pivotal roles in shaping 
the effectiveness of our control, with their specific values determined in accordance with the objectives of the con-
trol strategy. These constants are carefully selected to optimize the performance of the control mechanism and 
achieve the desired outcomes in disease containment and prevention.

This control law, tailored for the SIR model (1)-(3), aims at reducing the number of infected individuals over time 
and ensuring that the number of infections reaches the predefined threshold denoted Id at a specified time denoted 
T. The control is designed to address various real-world scenarios and public health challenges, offering proactive 
measures to mitigate the impact of infectious diseases.

Sufficient condition for admissibility of the control

Theorem 1. If , then the proposed control (4) is admissible, i.e𝑔𝑔𝑔𝑔 −
𝛽𝛽𝑆𝑆!
𝑁𝑁 < 𝜖𝜖 < 1 −

𝛽𝛽𝑆𝑆!
𝑁𝑁  

∀𝑡𝑡 > 0: 0 < 𝑢𝑢(𝑡𝑡) < 1 
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Proof. Recall that from (5) we have:

Then, u2  is an increasing function, and since 

Therefore,

and , thus

and

and , it follows that

. We have

Then u1 is a decreasing function, and since

On the other hand, we have

where 

𝑢𝑢(𝑡𝑡) = !"!
#
𝑢𝑢$(𝑡𝑡) − 𝑔𝑔 + 𝑢𝑢%(𝑡𝑡), 

𝑢𝑢!(0) = 1 𝑙𝑙𝑙𝑙𝑙𝑙
!→#$

𝑢𝑢%(𝑡𝑡) = (
1

1 + 𝑎𝑎)
&'!(%#))
)(+#,)-  

𝑢𝑢! = (
𝑎𝑎 + 𝑒𝑒"($%&)

(1 + 𝑎𝑎)𝑒𝑒"($%&)
)
()!(!%*)
*($%&)+  

𝑢𝑢!" (𝑡𝑡) = −
𝐼𝐼#𝛽𝛽(𝑎𝑎𝑒𝑒$%('()) + 1)

+!,(-(!)
.-('())(𝑎𝑎 + 1)

𝑁𝑁(𝑎𝑎 + 𝑒𝑒%('()))(𝑎𝑎 + 1)
+!,(-(!)
.-('())

< 0 

𝑢𝑢!(𝑡𝑡) =
(𝑔𝑔 + 𝜖𝜖)𝑒𝑒(#$%)'

𝑒𝑒(#$%)' + 𝑎𝑎
 

∀𝑡𝑡 > 0: (
1

1 + 𝑎𝑎)
!"!($%&)
&((%))* < 𝑢𝑢$(𝑡𝑡) < 1 

𝑢𝑢!" (𝑡𝑡) =
𝑎𝑎𝑒𝑒#(%&')(𝜖𝜖 + 𝑔𝑔)!

(𝑎𝑎 + 𝑒𝑒#(%&'))!
> 0 

∀𝑡𝑡 > 0:
𝑔𝑔 + 𝜖𝜖
1 + 𝑎𝑎 < 𝑢𝑢!(𝑡𝑡) < 𝑔𝑔 + 𝜖𝜖. 

𝛽𝛽𝑆𝑆!
𝑁𝑁 (

1
1 + 𝑎𝑎)

"#!(%&')
'()&*)+ − 𝑔𝑔 +

𝑔𝑔 + 𝜖𝜖
1 + 𝑎𝑎 < 𝑢𝑢(𝑡𝑡) <

𝛽𝛽𝑆𝑆!
𝑁𝑁 𝑢𝑢%(𝑡𝑡) + 𝜖𝜖 <

𝛽𝛽𝑆𝑆!
𝑁𝑁 + 𝜖𝜖 < 1. 

𝑢𝑢!(0) =
𝑔𝑔 + 𝜖𝜖
1 + 𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙

!→#$
𝑢𝑢%(𝑡𝑡) = 𝑔𝑔 + 𝜖𝜖 

And for a reasonable population size we get and since  thus(𝑁𝑁 >
𝛽𝛽𝐼𝐼!(1 + 𝑎𝑎)
𝑎𝑎(𝜖𝜖 + 𝑔𝑔)  

𝛽𝛽𝐼𝐼!(1 + 𝑎𝑎)
𝑎𝑎(𝜖𝜖 + 𝑔𝑔)𝑁𝑁 < 1	 1

1 + 𝑎𝑎 < 1, 

1
1 + 𝑎𝑎 < (

1
1 + 𝑎𝑎)

!"!($%&)
&((%))*  

then 𝑢𝑢(𝑡𝑡) >
𝛽𝛽𝑆𝑆!
𝑁𝑁

(
1

1 + 𝑎𝑎
) − 𝑔𝑔 +

𝑔𝑔 + 𝜖𝜖
1 + 𝑎𝑎

=
𝛽𝛽𝑆𝑆!
𝑁𝑁 + 𝜖𝜖 − 𝑔𝑔𝑎𝑎
1 + 𝑎𝑎 > 0
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and 

and 

Proof. We have from equation (1): 

𝑆𝑆∗(𝑡𝑡) = 𝑆𝑆"𝑒𝑒
#$!(&'()
((*'+),×./(

('0"($%&)
(('&)0"($%&)) 

𝐼𝐼∗(𝑡𝑡) = 𝐼𝐼"
1 + 𝑎𝑎

𝑒𝑒($%&)( + 𝑎𝑎
, 

𝑅𝑅∗(𝑡𝑡) = 𝑁𝑁 − 𝑆𝑆∗(𝑡𝑡) − 𝐼𝐼∗(𝑡𝑡) 

Remark 1. It’s important to note that the conditions outlined in the preceding theorem are sufficient but not nec-
essarily required. In certain scenarios, ϵ may not satisfy these conditions, yet the control remains admissible.

Explicit solutions of the epidemiological model

Theorem 2. If the proposed control (4) is used, then the solutions of the system (1)-(3) are:

𝑆𝑆∗!(𝑡𝑡) = 𝑆𝑆"(
𝛽𝛽𝐼𝐼"(1 + 𝑎𝑎)
𝑎𝑎(𝜖𝜖 + 𝑔𝑔)𝑁𝑁 × 𝑙𝑙𝑙𝑙(

𝑎𝑎 + 𝑒𝑒#(%&')

(𝑎𝑎 + 1)𝑒𝑒#(%&')
)))𝑒𝑒

*+"(,&-)
-(%&').×01(

-&2#(%&')
(-&,)2#(%&'))

= −𝑆𝑆"
𝛽𝛽𝐼𝐼"(1 + 𝑎𝑎)
𝑎𝑎(𝜖𝜖 + 𝑔𝑔)𝑁𝑁 ×

𝑎𝑎(𝜖𝜖 + 𝑔𝑔)
𝑎𝑎 + 𝑒𝑒#(%&')

𝑒𝑒
*+"(,&-)
-(%&').×01(

-&2#(%&')
(-&,)2#(%&'))

= −𝑆𝑆"
𝛽𝛽𝐼𝐼"(1 + 𝑎𝑎)

𝑁𝑁 ×
1

𝑎𝑎 + 𝑒𝑒#(%&')
𝑒𝑒
*+"(,&-)
-(%&').×01(

-&2#(%&')
(-&,)2#(%&'))

= −
𝛽𝛽
𝑁𝑁
(
𝐼𝐼"(1 + 𝑎𝑎)
𝑎𝑎 + 𝑒𝑒#(%&')

)(𝑆𝑆"𝑒𝑒
*+"(,&-)
-(%&').×01(

-&2#(%&')
(-&,)2#(%&')))

= −
𝛽𝛽
𝑁𝑁 𝐼𝐼

∗(𝑡𝑡)𝑆𝑆∗(𝑡𝑡)

 

And from Equation (2) we have:

𝛽𝛽𝑆𝑆∗(𝑡𝑡)𝐼𝐼∗(𝑡𝑡)
𝑁𝑁 − 𝑔𝑔𝐼𝐼∗(𝑡𝑡) − 𝑢𝑢(𝑡𝑡)𝐼𝐼∗(𝑡𝑡) =

𝛽𝛽
𝑁𝑁 (

𝐼𝐼"(1 + 𝑎𝑎)
𝑎𝑎 + 𝑒𝑒#(%&'))(𝑆𝑆"𝑒𝑒

)*!(+&,)
,(%&')-×/0(

,&1"($%&)
(,&+)1"($%&)))

−𝑔𝑔
𝐼𝐼"(1 + 𝑎𝑎)
𝑎𝑎 + 𝑒𝑒#(%&') − (

𝛽𝛽𝑆𝑆"
𝑁𝑁 𝑒𝑒

)*!(+&,)
,(%&')-×/0(

,&1"($%&)
(+&,)1"($%&)) − 𝑔𝑔 +

(𝑔𝑔 + 𝜖𝜖)𝑒𝑒('&%)#

𝑒𝑒('&%)# + 𝑎𝑎 )
𝐼𝐼"(1 + 𝑎𝑎)
𝑎𝑎 + 𝑒𝑒#(%&')

=
𝛽𝛽𝑆𝑆"
𝑁𝑁

𝐼𝐼"(1 + 𝑎𝑎)
𝑎𝑎 + 𝑒𝑒#(%&')

𝑒𝑒
)*!(+&,)
,(%&')-×/0(

,&1"($%&)
(,&+)1"($%&))

−
𝛽𝛽𝑆𝑆"
𝑁𝑁 𝑒𝑒

)*!(+&,)
,(%&')-×/0(

,&1"($%&)
(+&,)1"($%&)) 𝐼𝐼"(1 + 𝑎𝑎)

𝑎𝑎 + 𝑒𝑒#(%&')
−
(𝑔𝑔 + 𝜖𝜖)𝑒𝑒('&%)#

𝑒𝑒('&%)# + 𝑎𝑎
×
𝐼𝐼"(1 + 𝑎𝑎)
𝑎𝑎 + 𝑒𝑒#(%&')

= −
𝐼𝐼"(1 + 𝑎𝑎)(𝑔𝑔 + 𝜖𝜖)𝑒𝑒('&%)#

(𝑒𝑒('&%)# + 𝑎𝑎)2

= 𝐼𝐼∗((𝑡𝑡)
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Proof. Let , then at time T we have

Which completes the proof.  
Corollary 1. If the proposed control (4) is used, then the number of infected people tends towards zero.
Proof. Based on the result of theorem 2, we have                                         which is a decreasing function of time and 
 

This result underscores the efficacy of the proposed control strategy, as it effectively drives the number of infected 
individuals towards zero. It demonstrates the effectiveness of implementing the control mechanism, particularly in 
its ability to initiate a decline in the number of infections from the outset of its application. Additionally, the theo-
rem 2 provides explicit solutions for the model, which are essential for understanding the dynamics of the infection 
under the proposed control. Our control strategy includes parameters that significantly influence the speed of con-
vergence to zero. These parameters allow us to adjust and optimize the control measures to achieve desired out-
comes more effectively.

On the Controllability of the epidemiological model
Suppose there exists a predefined infection threshold Id established by the World Health Organization (WHO), and 

the key objective of the control approach is to ensure that the number of infected persons falls below this threshold 
Id at a predetermined time T. In accordance with this objective, the following theorem elucidates the critical role of 
parameter a in achieving this target: 

Theorem 3. If the parameter a is chosen to be                                , then at time T, the number of infected individu-
als precisely attains the threshol Id, i.e I* (T)=Id. Furthermore:

𝐼𝐼∗(𝑡𝑡) = 𝐼𝐼"
1 + 𝑎𝑎

𝑒𝑒($%&)( + 𝑎𝑎
 

𝑙𝑙𝑙𝑙𝑙𝑙
!→#$

𝐼𝐼∗(𝑡𝑡) = 0 

𝑎𝑎 =
𝐼𝐼!𝑒𝑒(#$%)' − 𝐼𝐼(

𝐼𝐼( − 𝐼𝐼!
 

(∀𝑡𝑡 > 𝑇𝑇): 𝐼𝐼∗(𝑡𝑡) < 𝐼𝐼" . 

𝑎𝑎 =
𝐼𝐼!𝑒𝑒(#$%)' − 𝐼𝐼(

𝐼𝐼( − 𝐼𝐼!
 

𝐼𝐼∗(𝑇𝑇) = 𝐼𝐼"
1 + 𝐼𝐼#𝑒𝑒

(%&')) − 𝐼𝐼"
𝐼𝐼" − 𝐼𝐼#

𝑒𝑒('&%)) + 𝐼𝐼#𝑒𝑒
(%&')) − 𝐼𝐼"
𝐼𝐼" − 𝐼𝐼#

= 𝐼𝐼"
𝐼𝐼" − 𝐼𝐼# + 𝐼𝐼#𝑒𝑒(%&')) − 𝐼𝐼"

𝐼𝐼"𝑒𝑒(%&')) − 𝐼𝐼#𝑒𝑒(%&')) + 𝐼𝐼#𝑒𝑒(%&')) − 𝐼𝐼"

= 𝐼𝐼"
𝐼𝐼#(𝑒𝑒(%&')) − 1)
𝐼𝐼"(𝑒𝑒(%&')) − 1)
= 𝐼𝐼# .

 

And since I* is a decreasing function, , which completes the proof. (∀𝑡𝑡 > 𝑇𝑇): 𝐼𝐼∗(𝑡𝑡) < 𝐼𝐼" 
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RESULTS AND DISCUSSION

In this section, computational techniques are employed to evaluate the effectiveness and performance of the pro-
posed control strategies within the SIR model, which is solved using the fourth-order Runge-Kutta method. Using 
numerical simulations, we explore various scenarios and parameters to assess the impact of the control mecha-
nisms on disease dynamics. By simulating the spread of infectious diseases under different conditions, we aim to 
gain insights into the efficacy of the proposed strategies in containing outbreaks, reducing the number of infec-
tions, and achieving predefined control objectives.

In these simulations, our population consists of N=25150 individuals, with S0=25000 initially susceptible, I0=150 
initially infected, and R0=0 initially recovered individuals. The transmission rate is set to β=0.41 (Rate of new infec-
tions per day) and the recovery rate to g=0.005 (Rate of recoveries per day). All parameters chosen for these simula-
tions are intended as academic examples. The primary goal in choosing these values was to depict a significant peak 
of infection, allowing a comprehensive comparison of outcomes with and without control measures.

Figure 1 depicts the progression of the epidemic within the population. We observe a peak in the number of infec-
tions, reaching approximately 2.4×104  individuals before gradually declining to around 1.5×104  by the end of the 
simulation. Concurrently, the number of susceptible individuals experiences a sharp decrease, approaching zero 
around t=30 in the simulation. Conversely, the number of recovered individuals exhibits a slow but steady increase, 
reaching approximately  104 by the simulation’s conclusion.

The decline in infections coincides with a significant decrease in the number of susceptible individuals, indicat-
ing the depletion of the susceptible population due to infection.

After using the proposed control (4) with a=1.3522×103  and                , it can be seen in figure 2b that despite 𝜖 
not satisfying the conditions outlined in theorem (1), the control remains admissible, where                                                                                                                                            
and                                                                   .

𝜖𝜖 = 0.1 

𝑎𝑎𝑎𝑎 −
𝛽𝛽𝑆𝑆!
𝑁𝑁 = 6.3532 > 1 −

𝛽𝛽𝑆𝑆!
𝑁𝑁 = 0.5924 

𝑎𝑎𝑎𝑎 −
𝛽𝛽𝑆𝑆!
𝑁𝑁 = 6.3532 > 𝜖𝜖 
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FIGURE 1.  (a) S, I and R functions. (b) The control function u.
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FIGURE 2.  (a) S, I and R functions. (b) The control function u.
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Figure 2a illustrates the impact of implementing the control law on epidemic dynamics. Notably, the control strat-
egy effectively reduces the number of infected individuals compared to the scenario without control. A gradual and 
stable decline in the number of susceptible individuals is observed, converging to approximately 2×104  by the end 
of the simulation. This contrasts with the rapid decline observed in the absence of control measures.

Additionally, the number of removed individuals exhibits a slow but steady increase, reaching approximately 
0.4×104  by the end of the simulation. This contrasts with the scenario without control, where a larger number of 

individuals are removed due to the uncontrolled spread of the disease.
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FIGURE 3. (a) Susceptible, (b) Infected, (c) Removed individuals.
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In Figure 3, three subplots are presented, each providing insight into the dynamics of the epidemic. Figure 3a illus-
trates the evolution of the susceptible population, while figure 3b depicts the progression of the infected population. 
Figure 3c showcases the trend of the removed population over time. Figure 3 enables a clearer understanding of each 
population’s dynamics on different scales. Specifically, smaller numbers, such as the initial infections starting at 150 
and gradually declining towards zero, are more easily discernible.

In the Figure 4, the control function is plotted for different values of  ϵ, in order to underscore the pivotal role of the 
parameter ϵ in shaping the behavior of the control function and highlights its significance in designing effective 
strategies to mitigate the impact of infectious diseases. It can be seen in figure 4 the effect of the parameter ϵ on the 
control function when a is held constant at 1. Each curve in the plot corresponds to a different value of ϵ, ranging 
from larger values to smaller ones. As ϵ changes, the control function undergoes noticeable changes in its shape and 
magnitude.
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FIGURE 4. The impact of Parameter ϵ on the Control Function.
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For larger values of  ϵ, the control function exhibits relatively higher amplitude, indicative of a more aggressive 
intervention approach. However, as ϵ decreases, the amplitude of the control function diminishes, reflecting a 
milder intervention strategy. Notably, for very small values of  ϵ, such as  0.001, the control function demonstrates 
a significant decrease, suggesting a minimal intervention effort.

The Figure 5 is presented to highlight the sensitivity of the control function to variations in the parameter a and 
emphasize the significance of meticulously selecting parameter values to optimize the effectiveness of intervention 
strategies in combating infectious diseases. Figure 5 presents the influence of the parameter a on the control func-
tion where ϵ is set to 0.2. Each curve in the plot corresponds to a different value of a, ranging from smaller to larger 
values. Notably, all curves exhibit the same shape, demonstrating that the general form of the control function 
remains consistent across varying values of  a. 

However, closer examination reveals notable differences in the behavior of the control function as a varies. For 
smaller values of a, such as 100 or 300, the control function demonstrates a rapid increase, indicating a swift imple-
mentation of intervention measures to curb the spread of infection. In contrast, for larger values of a, such as 600, 
900, or 1500, there is a noticeable delay in the rate of increase of the control function. This delay suggests a slower 
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response to the increasing number of infections, potentially leading to a longer duration before reaching peak inter-
vention levels.

Omar Zakary et al. Optimizing infection trajectories: Innovation in Controllability of Nonlinear SIR Model
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FIGURE 5. The impact of a on the control function.

When comparing the effects of ϵ and a on the control function, it becomes apparent that small variations in ϵ lead 
to significant changes in the control strategy. Even subtle adjustments in ϵ result in noticeable alterations in the 
shape and magnitude of the control function, highlighting the sensitivity of the intervention approach to this 
parameter. Conversely, when considering the parameter a, it becomes evident that larger differences between val-
ues are required to observe discernible changes in the control function. Unlike ϵ, where small values induce notable 
shifts in the control, variations in a necessitate much greater disparities to elicit observable differences in the 
behavior of the intervention strategy. This implies that the system exhibits lower sensitivity to the parameter a 
compared to ϵ, with substantial differences needed in a to produce discernible changes in the control function.

In the three subplots presented in Figure 6, the impact of varying the parameter ϵ on the different states of the 
model is observed: susceptible (S), infected (I), and removed (R) individuals.

In Figure 6a depicting the susceptibles, it can be seen that as ϵ decreases from 0.5 to 0.1, the rate of decrease in the 
number of susceptibles accelerates. While in Figure 6b that represents the infected population, we observe the 
opposite trend. As ϵ increases from 0.1 to 0.5, the rate of decrease in the number of infected individuals becomes 
more pronounced. This finding is consistent with the dynamics of infectious diseases, where higher values of ϵ 
indicate a faster recovery or removal of infected individuals from the population. Finally, in Figure 6c illustrating 
the removed individuals, we observe that all curves exhibit a similar increasing trend over time. However, for larger 
values of ϵ (0.5 and 0.4), the curve stabilizes around 300 individuals, indicating a slower accumulation of removed 
individuals. In contrast, for smaller values of ϵ (0.3, 0.2, and 0.1), the curve continues to rise steadily, eventually 
stabilizing at a higher value of around 950 individuals. This difference suggests that lower values of ϵ lead to a more 
prolonged period of recovery or removal, resulting in a higher overall number of removed individuals by the end of 
the simulation.
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Figure 7 examines the impact of varying the parameter a on the different states of the model: susceptible (S), 
infected (I), and removed (R) individuals.

In Figure 7a illustrating the susceptibles, it can be seen that as the parameter a  increases from 100 to 1500, the rate 
of decrease in the number of susceptibles accelerates.

While in Figure 7b representing the infected population, it noticed that regardless of the value of a, all curves 
exhibit a similar shape. However, as a increases, the rate of decrease in the number of infected individuals slows 
down. This finding suggests that while higher values of  a  may still effectively control the spread of the disease, 
they may lead to a longer duration of infection within the population.
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Finally, in Figure 7c depicting the removed individuals, it can be seen that all curves follow a similar increasing 
trend over time. However, for smaller values of a  (100 and 300), the curve stabilizes around 1600 individuals, indi-
cating a slower accumulation of removed individuals. Conversely, for larger values of a  (600, 900, and 1500), the 
curve continues to rise steadily, eventually stabilizing at a higher value of around 2300 individuals by the end of the 
simulation.

In Figure 8, the impact of different values of the parameter ϵ on the infection dynamics is explored, with a fixed 
threshold Id=15 and predefined time  T=40. Each curve represents the evolution of the infected population I over 
time, ranging from ϵ=0.1 to ϵ=0.5.

The key observation from this plot is the efficacy of the proposed control approach in containing the infection 
within the desired threshold. Across all curves, it can be seen that the number of infections falls below the thresh-
old Id=15 precisely at the predefined time T=40. This shows the precise controllability achieved by the proposed 
intervention, regardless of the specific value of  ϵ.

However, we notice differences in the shapes of the decreasing curves for varying values of ϵ. For smaller values 
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of  ϵ, such as ϵ=0.1 and ϵ=0.2, the infection decreases rapidly. This rapid decline suggests that smaller perturba-
tions in the control parameter ϵ lead to more pronounced effects on infection containment. In contrast, for larger 
values of ϵ, such as ϵ=0.4 and ϵ=0.5, the infection decreases at a slower rate. This slower decline indicates that 
larger values of ϵ result in less effective control measures, requiring more time to begin decreasing towards the 
predefined threshold.
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FIGURE 8. The impact of  ϵ on the controllability effectiveness.

In Figure 9, six subplots are presented illustrating the infection dynamics (I) for various combinations of the 
threshold Id and the predefined time T. Each subplot corresponds to a specific pair of values (Id in individuals and T 
is time unit) : (a) Id=15 and T=20, (b) Id=15 and T=30, (c) Id=15 and T=60, (d) Id=30 and T=40, (e) Id=40 and T=40, and 
(f) Id=50 and T=40.

Across all subplots, it can be seen that the number of infected individuals precisely reaches the desired threshold 
Id exactly at the designated time T. This outcome underscores the remarkable effectiveness of our proposed control 
law in managing the rate of infection spread within the population. 

In Figure 9a where Id=15 and T=20, we observe the infection curve intersecting the threshold line at T=20, indicat-
ing successful containment of the infection within the desired time. Subsequent subplots (b) and (c) exhibit similar 
trends, with the infection curve intersecting the threshold line at the designated times T=30 and  T= 60, respec-
tively.

In Figure 9 (d), (e), and (f), scenarios with higher threshold values of Id are explored, while maintaining T=40. 
Despite the varying threshold levels, it can be observed that the infection curve intersecting the threshold line at 
the predefined time T=40, highlighting the robustness of our control strategy across different infection severity 
levels.
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FIGURE 9. The controllability effectiveness.
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Figure 10 explores the influence of varying initial infected populations (I0) on the effectiveness of the controllabil-
ity. Through three subplots representing the susceptible (a), infected (b), and removed (c) populations, we investi-
gate the impact of different initial conditions on the trajectory of the epidemic, where Id=40, T=40, S0=108 and  R0=0

0 20 40 60 80 100 120
Time (Days)

0

50

100

150

N
um

be
r o

f p
eo

pl
e

Infected people

0 20 40 60 80 100 120
Time (Days)

0

50

100

150

N
um

be
r o

f p
eo

pl
e

Infected people

0 20 40 60 80 100 120
Time (Days)

0

50

100

150

N
um

be
r o

f p
eo

pl
e

Infected people

0 20 40 60 80 100 120
Time (Days)

0

50

100

150

N
um

be
r o

f p
eo

pl
e

Infected people

(a)

(c)

(b)

(d)



REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | VOL. 45 | NO. 2 | MAY-AUGUST 2024166

FIGURE 10. The impact of  I0  on the controllability effectiveness (a) Susceptible individuals, (b) Infected individuals and (c) 
Removed individuals.
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Firstly, focusing on the infected population (Figure 10b), it can be observed that all curves intersect the predefined 
threshold line (Id) at the designated time (T), indicating the successful implementation of the control strategy. This 
demonstrates the ability of the control measures to achieve the desired containment objective regardless of the 
initial outbreak size.

For the susceptible population (Figure 10a), we note a discernible trend: for larger initial infected populations (I0), 
the decline in susceptible individuals is more pronounced. This suggests that higher levels of infection exert greater 
pressure on the susceptible population, leading to a more rapid depletion of susceptible individuals.

In contrast, when examining the removed population (Figure 10c), a contrasting pattern is observed. Here, larger 
initial infected populations result in a more substantial increase in removed individuals over time. This observation 
highlights the effectiveness of the control strategy in transitioning infected individuals to the removed category.

When the initial infected population is large, there is a higher probability of interactions between infected and 
susceptible individuals, resulting in increased transmission of the disease.
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Consequently, more individuals become infected over time. However, with the implementation of effective control 
measures, such as vaccination campaigns, quarantine measures, or other interventions, the transmission dynamics 
are disrupted.

The impact of varying the initial values of S0 and R0 on the effectiveness of controllability is also investigated. 
However, it found that regardless of the initial values of S0, the function I showed no changes. Similarly, variations 
in the initial values of R0 did not affect the dynamics of the infection. These observations suggest that the control-
lability of the system remains robust and relatively unaffected by changes in the initial states of susceptible and 
recovered individuals.

Figure 11 investigates the impact of varying initial values of infected individuals (I0) in the absence of control 
measures where  S0= 108 and  R0= 0. Through this analysis, it was observed that without control, there is a substan-
tial increase in the number of removed individuals, indicating the natural progression of the infection. Conversely, 
when implementing control measures, such as those outlined in figure 10c, the number of infections remains rela-
tively low, resulting in a smaller number of individuals transitioning to the removed category. This clear contrast 
underscores the effectiveness of the control strategy in mitigating the spread of infection and minimizing the num-
ber of individuals affected.
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FIGURE 11. Impact of  I0 on removed people without the control.

Figure 12 illustrates a parameter space analysis of the maximum intensity of the control function u(t) across vary-
ing combinations of parameters a and ϵ. Each point in the parameter space grid represents a unique combination of 
parameter values. The color intensity represents the maximum value of the control function achieved for each 
parameter combination. This analysis provides insights into how changes in parameters a and ϵ influence the effec-
tiveness of the control strategy. This figure illustrates the admissibility the control for a wide range of parameters.

Our proposed control strategy, tailored for the SIR model, offers distinct advantages over existing approaches [22][23]

[24]. While these papers provide valuable insights into controlling infectious diseases and focus on generic control 
methods, our proposed control stands out in terms of precision and adaptability.
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FIGURE 12. Impact of  I0 on removed people without the control.

One key advantage of our proposed control is its ability to ensure the total controllability of the number of infec-
tions. The infection dynamics can be guided to a desired state from any initial condition, at a desired time. This level 
of precision is unparalleled and represents a significant advancement in epidemic control strategies. In contrast to 
the methods discussed in [22][23][24], which rely on Pontryagin's principle to reduce the number of infections, our 
approach offers greater control over the infection dynamics. While Pontryagin's principle is effective in minimizing 
infections, it lacks the precision and flexibility inherent in our proposed control strategy.

CONCLUSIONS
This study addresses the formidable challenge of controllability in nonlinear models, with a specific focus on 

designing a control strategy to manage infection dynamics within the SIR framework. By tackling this complex 
task, our research contributes significantly to the field of epidemiology, offering policymakers and public health 
authorities invaluable insights for implementing targeted interventions and resource allocation strategies.

Our novel control law, tailored specifically for SIR models, represents a significant advancement in infectious dis-
ease control. 

By providing explicit solutions to the model, our approach effectively mitigates the spread of infection and guides 
the number of infected individuals towards predetermined thresholds at specified times. 

This precision in controlling infection dynamics is essential for effective epidemic management and containment 
efforts. Through comprehensive numerical simulations, the remarkable efficacy of our proposed control law is 
depicted. The results unequivocally show that our approach enables precise regulation of the pace of infection 
decline, aligning with predefined targets with remarkable accuracy. For instance, by employing the proposed con-
trol function, a gradual decrease in the infection rate is ensured, ultimately leading it towards zero. Moreover, the 
approach guarantees that the number of infections will dip below a predetermined threshold at a specified time. 
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This level of precision represents a novel contribution compared to existing studies in the field [22][23][24][25][26], where 
control functions primarily focus on minimizing the number of infections using Pontryagin's maximum principle.

In [22], the authors presented a model for the transmission dynamics of influenza and considered two optimal con-
trol strategies involving preventive measures (such as awareness campaigns, hand washing, using hand sanitizer, 
and wearing masks) and treatment. These strategies were used to minimize the total number of infected individu-
als and the associated costs of implementing these controls. The objective function was designed to reduce both the 
infection rate and the cost of interventions. The optimal control analysis and numerical simulations revealed that 
these interventions effectively reduced the number of exposed and infected individuals.

Similarly, in [24], within the framework of a basic susceptible–infected–removed (SIR) model, an Erlang distribution 
for the infectious period was considered, and optimal isolation strategies were explored. The objective functional 
to be minimized included the cost of isolation efforts per time unit and the sanitary costs due to the incidence of 
the epidemic outbreak. The simulations demonstrated that the shape of the optimal solutions was influenced by 
different distributions of the infectious period, the relative weight of the two cost components, and the initial con-
ditions.

These control strategies did not ensure the convergence of the number of infected individuals to zero. Additionally, 
they did not provide a mechanism for precisely steering the number of infections toward a predetermined threshold 
at a specific time, as proposed by our control strategy. Our approach not only aims to reduce the number of infec-
tions but also ensures that the number of infected individuals reaches a specific target at a designated time, provid-
ing a more precise and effective method of controlling the spread of the infection.

During the early stages of the COVID-19 pandemic, many countries implemented stringent control measures, such 
as closing borders and enforcing lockdowns, to curb the spread of the virus [26]. These measures aimed primarily at 
reducing the infection rate within a specific time frame, often without considering the significant economic 
impacts. Such control measures effectively reduced the number of new infections by limiting cross-border move-
ment and preventing the importation of new cases. However, these measures also resulted in considerable eco-
nomic disruptions, affecting trade, tourism, and overall economic activity.

Our control strategy represents a severe control approach that prioritizes the reduction of infections within a pre-
determined time frame without any constraints. This strategy is highly effective in significantly reducing the num-
ber of infections within the predetermined time 𝑇.

However, while the optimal control methods provided by Pontryagin's Maximum Principle are still effective in 
reducing infections [22][23][24][26], they lack precision in terms of controlling the exact timing and magnitude of infec-
tion reduction. The optimal control strategy aims to minimize the infections while simultaneously considering 
other factors, such as economic costs and social impacts, by incorporating constraints within the objective func-
tion. As a result, the optimal control can achieve infection reduction but may not provide precise control over the 
specific timeframe or the exact number of infections reduced.

 This finding highlights the versatility and adaptability of our control strategy, positioning it as a promising tool for 
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epidemic management across diverse settings and scenarios.
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