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ABSTRACT  
The present study aims to evaluate various classification algorithms for data pertaining to subjects diagnosed with 
depression and non-depressive subjects. To this end, the data obtained from the "depresjon" dataset proposed 
by Garcia-Ceja, E., et al were analyzed. This dataset comprises motor activity recorded by the Actiwatch device 
(Cambridge Neurotechnology Ltd, England, model AW4). Predictions were made using various machine learning 
models, including synthetic data. Subsequently, metrics such as specificity, sensitivity, and precision were compared. 
The results highlight the best features of the data and the best machine learning model (using an ensemble model) 
for classifying potential depressive episodes in activity during the afternoon and night, with a precision of 96.6 %, 
sensitivity of 100 %, and specificity of 93.33 %. 
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RESUMEN 
El presente estudio tiene como objetivo evaluar diversos algoritmos de clasificación de datos pertenecientes a 
sujetos diagnosticados con depresión y sujetos no depresivos. Para ello, se analizaron los datos obtenidos del dataset 
"depresjon" propuesto por Garcia-Ceja, E., et al, el cual se compone de la actividad motora captada por el dispositivo 
Actiwatch (Cambridge Neurotechnology Ltd, England, model AW4). Mediante distintos modelos de aprendizaje 
automático se realizaron predicciones incluyendo datos sintéticos. Posteriormente, se compararon métricas como 
especificidad, sensibilidad y precisión. Los resultados muestran las mejores características de los datos, así como el 
mejor modelo de aprendizaje automático (mediante modelo de ensamble) para realizar la clasificación de posibles 
episodios depresivos en la actividad durante la tarde y la noche, con una precisión del 96.6 %, una sensibilidad del 
100 % y una especificidad del 93.33 %.

PALABRAS CLAVE: actividad motora, análisis de datos, aprendizaje automático, depresión, minería de datos
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INTRODUCTION

Portable electronic devices known as "wearables" have been utilized in the field of healthcare over the last decade. 
These devices not only accurately capture data, but have also found applications in several areas such as medicine, 
psychology, rehabilitation, and intervention for various psychological disorders[1]. They are particularly valuable in 
non-invasive research, providing greater precision with measurements ranging from seconds to entire weeks. 
Additionally, the implementation of these devices enables continuous monitoring of subjects under study without 
the need for direct observation by the experimenter, resulting in cost savings in research and minimal disruption to 
the daily activities of the subjects.

Major Depressive Disorder (MDD), a condition affecting approximately 280 million people worldwide[2], is charac-
terized by persistent sadness, loss of interest in previously enjoyable activities, inability to perform daily activities 
for at least two weeks, decreased energy, changes in appetite, alterations in circadian rhythms, among other clinical 
features[3]. Due to the reduction in daily activities, various mental illnesses have been studied using electronic 
devices[4], and different machine learning models[5][6]. As a result, the use of different devices for recording markers 
has become increasingly common in current research. These markers prove useful when analyzing variables related 
to morbid processes, including but not limited to blood pressure[7], blood oxygenation[8], motor activity[9], and other 
parameters to identify different physical and mental health alterations.

Recent studies indicate that motor activity during different times of the day can strongly correlate with depression. 
The use of wearables has highlighted a key clinical feature: reduced movement, linked to symptoms such as drows-
iness, insomnia, decreased interest in physical activity, and unwarranted fatigue. Additionally, sociodemographic 
characteristics have established connections between depression and risk groups. However, the diversity in parent-
ing styles, social skills, cognitive assets, and external variables complicates psychological research, making it diffi-
cult to find well-supported, generalizable relationships for accurate differential diagnosis[10]. Thus, providing precise 
prognoses and treatments requires careful consideration of these diverse factors.

Accurate diagnosis of affective disorders is crucial, since these conditions can lead to suicidal ideation and irritabil-
ity, endangering both the affected individuals and their caregivers[11]. Research has explored the impact on quality 
of life[12] and the potential comorbidities with cardiovascular, metabolic, and cancer-related diseases[13]. While MDD 
is treatable with medication and psychotherapy, early intervention significantly improves outcomes. Thus, certain 
tools are essential for the timely detection of depressive episodes. Existing tests, such as the Beck Depression 
Inventory (BDI)[11], the Diagnostic and Statistical Manual (DSM-V)[12], the International Classification of Diseases 
(ICD-10)[14], and the Montgomery-Asberg Depression Rating Scale (MADRS)[13], rely on patient-reported information 
and are subject to potential human error. Additionally, technical requirements, frequent updates by healthcare 
institutions, and the willingness of at-risk individuals can hinder timely treatment in some populations.

Hence, the implementation of new technologies is necessary to enable early detection through comprehensive, 
harmless, and non-invasive monitoring for individuals, thereby reducing medical costs[15]. This approach offers the 
adaptation of treatment based on captured data as time progresses. The monitoring of motor activity in medical and 
psychiatric fields proves advantages in abnormal behaviors identification detecting specific periods of movement 
that can provide insights into recognizing behavioral patterns associated with diseases such as dementia (cita), 
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depression[15], anxiety (cita), and schizophrenia[16]. In conditions like anxiety and depression, it has been demon-
strated that affected patients tend to reduce daytime activity, increase nighttime activity, and engage in activities 
related to certain diagnostic criteria outlined by the DSM-V[12]. On the other hand, patients diagnosed with different 
types of bipolar disorder exhibit increased energy during recognizable periods accompanied by periods in which 
activity significantly decreases. Therefore, monitoring motor activity serves as a good indicator for differentiation 
between individuals with a depressive episode or bipolarity, as they show discrepancies compared to healthy indi-
viduals[17].

Motor signals have been acquired using diverse methodologies, including different types of accelerometers. It has 
been suggested that assorted devices of this nature are viable for behavioral analysis in sports, disease prevention, 
and management[18], enabling efficient and precise measurement of treatment progress. Once the information is 
obtained, varied methods of statistical processing and/or classification can assist in the pharmaco-psychological 
treatment by providing quantitative insights that complement the work of the professional team. Enrique Garcia-
Ceja et al.[6] conducted a study where data on the motor activity of 23 patients with depression (the "condition" 
group) were obtained, along with sociodemographic characteristics such as age, gender, presence of melancholy, 
type of illness (unipolar or bipolar), patient type (outpatient or hospitalized), level of education, marital status, 
employment status (employed, unemployed, or subsidized by a government program), as well as scores on the 
depression scale (MADRS). Additionally, 32 healthy subjects (the "control" group) were included, from whom only 
age and gender characteristics were obtained.

Different machine learning algorithms were employed to classify depressive and non-depressive signals using the 
mentioned data. The study demonstrated that these models could analyze motor behavior to classify subjects. 
Additionally, classifying conditions based on sociodemographic characteristics significantly impacts psychological 
diagnosis and can guide tailored treatments. This article addresses both motor and sociodemographic characteris-
tics to classify depressive and healthy subjects, as well as different types of depression within the "condition" group. 
Classification methods through machine learning algorithms will be used, involving data mining processes to mini-
mize variables affecting predictors' performance and maximize the impact of variables highly associated with 
depression[18], aiming to maintain control and generate useful data for classification. The data were segmented by 
different time periods: early morning (00:00 – 06:00 hs), morning (06:01 – 12:00 hs), afternoon (12:01 – 18:00 hs), 
and night (18:01 – 24:00 hs).

The structure of the article is as follows: Materials and Methods, Results, Discussion, and Conclusion. These sec-
tions describe the processes implemented for classifying various parameters in the control and condition groups.

MATERIALS AND METHODS
Pre-processing data

The data mining process commenced with the organization and cleaning of data extracted from the dataset avail-
able at: https://datasets.simula.no//depresjon/. As depicted in, this dataset contains information regarding the 
motor activity (counts per minute) of patients diagnosed with some form of depression, as well as information about 
healthy subjects. The records were initially stored individually in separate files, each containing details such as 
one-minute time intervals, date of data acquisition, and motor activity. Each record was analyzed individually, and 
data that were deemed non-informative (exhibiting abnormal distribution, auto-correlation, or suggesting little 

https://datasets.simula.no//depresjon/
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relevance of characteristics to the explanation of the phenomenon in question) were excluded.

The records exhibited varying duration, spanning up to 20 days. Consequently, the minimum number of records 
per subject was considered as a threshold for extracting statistical features and subsequent training and testing of 
machine learning methods. The dataset was divided into 52 subsets, corresponding to each of the 4 daily periods (6 
hours per period). This division involved selecting 13 continuous days of data for each subject from the aforemen-
tioned groups, ensuring that all subjects commenced and concluded their records at the same minute. The resulting 
dataset comprises 15 subjects from the condition group and 15 subjects from the control group, aiming to minimize 
potential data imbalance.

Descriptive statistics
The statistical treatment of the data began with normality tests applied to each of the 52 subsets (4 subsets for each 

of the 13 days), using the Shapiro-Wilk test (see Algorithm 1), revealing a non-normal distribution p < 0.05 of the 
data in most time periods analyzed in both groups. Subsequently, descriptive statistical tests were conducted to 
identify differences in movements between groups and generate potentially informative data. the parameters min-
imum value (Min), maximum value (Max), and mean (Mean) equations (2 and 3), were computed using the R func-
tion summary, while the calculation of the standard deviation (SD) was performed using the (stats) package equa-
tion (4), Additionally, the skewness (SK) and kurtosis (KURT) were calculated with the (e1071) library equations (5 
and 6) were calculated for each subset Table 1. Other libraries were employed for specific purposes, such as (ggplot2) 
for generating graphs, (dplyr) and (tidyr) for data manipulation and preprocessing, (caret) for training and testing 
machine learning models, and (ape) for advanced statistical analyses.

Based on relevant research on movement and mental disorders [19], maximum values for the groups were imputed 

 

PPeerriiooddss  NNuummbbeerr  ooff  oobbsseerrvvaattiioonnss  FFeeaattuurreess  
Early Mornings 4680 Min, Max, Mean, SD, SK, KURT 
Morning 4680 Min, Max, Mean, SD, SK, KURT 
Afternoon 4680 Min, Max, Mean, SD, SK, KURT 
Night 4680 Min, Max, Mean, SD, SK, KURT 

 

TABLE  1. "Dataset created from the Depresjon dataset."

using the metric of mean + 2 standard deviations. This was done to maintain expected ranges of movement in 
accordance with literature reports[20], thereby reducing the chances of misclassification due to data acquisition 
errors or potential sensor failures.

Algorithm: Shapiro-Wilk Test Formula
Input:
   Sample data X = (x1,x2…xn)
Output:
   Test statistic W and p-value
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Steps:
1. Sort the data in ascending order: x(1)≤ x(2)…≤ x_(n).
2. Calculate the coefficients ai,bi and ci  for i =1,2,…n.
3. Calculate the test statistic

(3)

(4)

(5)

(1)𝑊𝑊 =  
(∑ 𝑎𝑎𝑖𝑖𝑥𝑥(𝑖𝑖)

𝑛𝑛
𝑖𝑖=1 )2

(∑ (𝑥𝑥(𝑖𝑖) −𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑥)2 

where x is the sample mean.
4. Calculate the expected value E(W) and the variance Var (W) under normality for the given sample size.
5. Calculate the p-value by comparing W to the distribution of W under the null hypothesis.

The formulas used to obtain the metrics mentioned in Table 1 are presented below

(2)𝑈𝑈 = min(𝑈𝑈1, 𝑈𝑈2) = 𝑅𝑅 −  𝑛𝑛1  ∙  (𝑛𝑛1 + 1)
2  ,

  where:
U1 and U2 are the sums of ranks for the two samples,
R is the sum of ranks for the entire sample,
n1 and n2 are these the sample sizes of the  two groups.

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  
∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1

𝑚𝑚
 

where: 
xi  represent the value of the sample 
n is  the total number of observations.

𝑆𝑆𝑆𝑆 =  √∑ (𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑥)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁 − 1
 

where: 
xi  represents the values in the sample
x̄  is the sample mean 
N is the sample size

𝑆𝑆𝑆𝑆 =  
1
𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖 −  �̄�𝑥)3𝑛𝑛

𝑖𝑖=1

(√1
𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖 − �̄�𝑥)2𝑛𝑛

𝑖𝑖=1 )3

 
where: 
xi  represents the values in the sample
x̄  is the sample mean 
n is the sample size
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where: 
xi  represents the values in the sample
x̄   is the sample mean 
n is the sample size
σ is standard deviation 

Feature selection
After organizing and obtaining metrics for each of the 52 subsets, a total of 312 features were collected. These fea-

tures were then analyzed to extract relevant characteristics, achieved through multi-variable feature selection using 
genetic algorithms with the Galgo package[21], below is a brief description of the classification algorithms used for 
feature extraction through the Galgo library. Forward selection was performed using various methods: Support 
Vector Machines (SVM) an algorithm that maximizes a specific mathematical function with respect to a set of infor-
mation, through key concepts: the separation of the hyperplane, maximizing the margin of the hyperplane, soft of 
the margin, and the Kernel function[22], the algorithm learn by example to assign labels to objects[23]..

Neural Networks (NNET): Neural networks consist of an input layer with several nodes, internal hidden layers, and 
an output layer. Each node is associated with weights, activation functions such as: Linear, Tanh, ReLU, Sigmoid, to 
mention a few, and thresholds, connecting to the next layer until reaching the output layer where the classification 
results from the information in the first layer, typically, the data undergoes a training phase in which weights and 
thresholds are adjusted to provide a more accurate classification. On the other hand, there are various algorithms 
such as "Adeline, perceptron, and backpropagation" that enable the adjustment of parameters to achieve optimal 
classification[24].

k-Nearest Neighbors (KNN) supervised machine learning algorithm that can be used to solve both classification 
and regression problems, is a non-parametric classification method[25], through the calculation of distances between 
the data points with respect to others[26], assigning labels and iterating until well-differentiated groups are found 
based on distances such as Euclidean or Manhattan.

Random Forest Algorithm (RF) is a supervised classification algorithm which classifies the data by constructing a 
number of Classifiers (decision trees) with an aim to achieve a higher accuracy of prediction[27], the Random forest 
uses "Adaboost and Bootstrapping" techniques to construct multiple classifiers[28]. This algorithm has been applied 
in economics, medicine, commerce, and the financial sector in recent decades, as high levels of accuracy have been 
reported in classification tasks with large amounts of data[29]. Furthermore, this technique allows the construction 
of multiple classifiers that cater to specific issues, thereby minimizing errors in predictions[30].

Training and test phase
The use of machine learning algorithms previously mentioned in the analysis of human movement through wear-

able devices like the Actiwatch is motivated by the need to process and classify complex temporal data patterns 
effectively[6]. Human motor activity, as recorded by wearable sensors, often exhibits high variability due to individ-

(6)
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =  

∑ (𝑥𝑥𝑖𝑖 −  x̄ )4
𝑖𝑖

𝑛𝑛
𝜎𝜎4 − 3

 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =  
∑ (𝑥𝑥𝑖𝑖 −  x̄ )4

𝑖𝑖
𝑛𝑛

𝜎𝜎4 − 3
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ual differences, behavioral routines, and external influences[20]. Additionally, these data can be noisy, non-linear, 
and sometimes chaotic, making traditional statistical approaches insufficient for distinguishing between relevant 
patterns and random fluctuations.

By implementing these algorithms, we aim to improve the accuracy and reliability of classification models that 
distinguish between depressive and non-depressive subjects based on movement data. Furthermore, analyzing the 
most relevant features influencing these models can provide insights into the behavioral differences underlying 
these conditions. The combination of SVM, KNN, and Neural Networks allows for a comprehensive assessment of 
motor activity, balancing interpretability, efficiency, and performance in detecting meaningful patterns in wearable 
sensor data[3].

Classifications were conducted by applying the various algorithms mentioned earlier separately to identify sub-
jects with depression and healthy subjects. This process was carried out in three stages. In the first stage, the motor 
activity data were partitioned into 75 % for the training phase and the remaining 25 % for the testing stage, with a 
k=5 cross-validation applied.

The Support Vector Machine (SVM) was implemented using the svm() function from the (e1071) package. By 
default, the kernel function used is the Radial Basis Function (RBF). The cost parameter defaults to 1, and the 
gamma parameter is automatically computed as equation 7:

𝛾𝛾 = 1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑛𝑛𝑝𝑝

 

(7)

The Neural Network (NN) classifier was trained using the train() function from the (caret) package, leveraging the 
"nnet" method from the nnet package. The neural network consists of a single hidden layer by default, with the 
number of neurons set to (input features + output classes)/2. The activation function used for hidden layers is the 
sigmoid function, and the output layer applies the softmax function for classification tasks. The weight decay 
(decay) parameter, which prevents overfitting, defaults to 0, and the maximum number of iterations (maxit) 
defaults to 100. The optimization is performed using backpropagation with a gradient-based method.

The Random Forest (RF) classifier implemented using the "rf" method in train(), which internally calls the ran-
domForest function from the randomForest package. By default, the number of trees (ntree) is set to 500, and the 
number of randomly selected predictors per split (mtry) is set to the square root of the total number of predictors 
for classification tasks. The model aggregates multiple decision trees and uses majority voting to improve predic-
tive performance while reducing overfitting.

The K-Nearest Neighbors (KNN) model was implemented using the "knn" method in train(), which relies on the 
knn() function from the (class) package. The number of neighbors (k) is tuned automatically by (caret). The 
Euclidean distance metric is used to measure similarity between data points.

The second stage involved generating synthetic random data by bootstrap method, a statistical technique used to 
estimate the distribution of statistics by resampling with replacement from the original data. It allows for assessing 
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the variability of a statistic without relying on strong assumptions about the underlying population distribution[31], 
considering the key characteristics described, and matching the number of subjects in the generated dataset to 
n=30.

In the third and final stage, proportional partitioning of sociodemographic data was performed similarly to the 
motor activity data. Feature selection was implemented using Galgo[21]. Subsequently, various machine learning 
methods were applied, and the results were validated using k=5 cross-validation. Finally the Stacked Ensemble 
Model[32] integrates the predictions from the SVM, NN, RF, and KNN classifiers. The stacking process involves gen-
erating out-of-fold (OOF) predictions from the base models and using them as inputs for a meta-learner, which in 
this case was a logistic regression model (glm method) from the stats package. The goal of the stacked model is to 
leverage the strengths of each individual classifier and improve overall predictive accuracy.

RESULTS AND DISCUSSION

The top 10 features were extracted in order of relevance: "maximum value night 1", "maximum value afternoon 
2", "maximum value night 8", "maximum value afternoon 1", "maximum value afternoon 3", "maximum value 
afternoon 5", "maximum value afternoon 10", "maximum value afternoon 8", "maximum value morning 4", and 
"maximum value morning 2". These features exhibited classification accuracy ranging from 96.6 % to 100 % for 
distinguishing between groups using different algorithms.

Several predictions were made using the models mentioned earlier. Finally, to assess the performance of each 
classification model based on metrics such as True Positives (TP) (subjects with depression correctly classified), 
True Negatives (TN) (control subjects correctly classified), False Positives (FP) (control subjects incorrectly classi-
fied), and False Negatives (FN) (subjects with depression incorrectly classified). Sensitivity (7), specificity (8), and 
accuracy (9).

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
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𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 	
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹	
 

(9) 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

 

(8)

(9)

(10)

The Mann-Whitney U (2) tests were conducted, contrasting the maximum values of the groups during each of the 
days considered in the present study. In the following tables 2 and 3, W-statistic values and the p-value for each of 
the different periods over the 13 days are shown. Significant differences are noted between the control and condi-
tion groups, primarily during the morning (Figure 1), afternoon, and night periods (Figure 2).

𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 × 𝐹𝐹𝑇𝑇
√(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)

 (11)
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FIGURE 1. Maximum values of motor activity over 13 days (early morning and morning).
 

 

Early 
mornings W-value P-value Mornings W-value P-value 

1 160.5 0.04597 1 210 1.108e-05 
2 117 0.8633 2 210 6.362e-06 
3 151 0.1087 3 210 1.117e-05 
4 174 0.009906 4 210 1.36e-05 
5 165 0.02776 5 196 0.0002472 
6 160 0.04736 6 210 1.07e-05 
7 182 0.003716 7 210 8.625e-06 
8 135 0.353 8 210 8.625e-06 
9 143 0.2028 9 210 1.07e-05 

10 155 0.07057 10 210 6.362e-06 
11 210 2.83e-05 11 197 0.0001651 
12 164 0.02796 12 210 1.36e-05 
13 151.5 0.1072 13 210 1.07e-05 

 

TABLE 2. Statistical results of maximum motor activity comparison between different groups during early mornings and 
mornings.

The condition group shows a tendency toward lower motor activity compared to the control group (Figures 3-4). 
This finding aligns with clinical criteria described in diagnostic manuals such as the DSM-5[12] and ICD-10[14], which 
highlight psychomotor retardation, lethargy, and reduced engagement in previously enjoyed activities as key symp-
toms of depression. Individuals with depression often experience diminished motivation, fatigue, and an overall 
reduction in voluntary movement, which could contribute to the lower motor activity observed in the experimental 
group.

FIGURE 2. Maximum values of motor activity over 13 days (Afternoon and night).
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FIGURE 3. Average values of mean motor activity over 13 days (Early morning and morning).

TABLE 3. Statistical results of maximum motor activity comparison between different groups during afternoons and nights.
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Afternoons W-value P-value Nights W-value P-value 
1 160.5 0.04597 1 210 1.108e-05 
2 117 0.8633 2 210 6.362e-06 
3 151 0.1087 3 210 1.117e-05 
4 174 0.009906 4 210 1.36e-05 
5 165 0.02776 5 196 0.0002472 
6 160 0.04736 6 210 1.07e-05 
7 182 0.003716 7 210 8.625e-06 
8 135 0.353 8 210 8.625e-06 
9 143 0.2028 9 210 1.07e-05 

10 155 0.07057 10 210 6.362e-06 
11 210 2.83e-05 11 197 0.0001651 
12 164 0.02796 12 210 1.36e-05 
13 151.5 0.1072 13 210 1.07e-05 
 

Additionally, the Mann Whitney test was conducted with the averages of motor activity under the same conditions 
for both groups. The following tables 4-5 display the statistical values as well as the p-values for each of the subsets.

Revista Mexicana de Ingeniería Biomédica 

 

Early 
mornings W-value P-value Mornings W-value P-value 

1 130 0.4806 1 170 0.01804 
2 99 0.5897 2 202 0.0002222 
3 116 0.9009 3 208 8.104e-05 
4 129 0.5068 4 169 0.02016 
5 131 0.4552 5 152 0.1057 
6 137 0.3194 6 182 0.004201 
7 136 0.34 7 172 0.01438 
8 99 0.5897 8 210 8.625e-06 
9 103 0.7089 9 184 0.003223 

10 89 0.34 10 181 0.004785 
11 164 0.03436 11 131 0.4552 
12 139 0.2807 12 166 0.02789 
13 105 0.7715 13 174 0.01138 
 

TABLE 4. Statistical results of mean motor activity comparison between different groups during early mornings and mornings.
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FIGURE 4. Average values of mean motor activity over 13 days (Afternoon and night).
TABLE 5. Statistical results of mean motor activity comparison between different groups during afternoons and nights.

 

 

Afternoons W-value P-value Nights W-value P-value 
1 146 0.171 1 179 0.006178 
2 168 0.0225 2 209 6.811e-05 
3 195 0.000669 3 175 0.01011 
4 185 0.002817 4 156 0.07443 
5 161 0.04644 5 136 0.34 
6 158 0.06191 6 186 0.002457 
7 152 0.1057 7 172 0.01438 
8 176 0.008957 8 182 0.004201 
9 147 0.1584 9 163 0.03805 

10 172 0.01438 10 174 0.01138 
11 179 0.006178 11 167 0.02507 
12 153 0.09702 12 155 0.08143 
13 157 0.06793 13 139 0.2807 

 

We conducted within-group comparisons across different time periods. Table 6 presents the significant differ-
ences in maximum motor activity values exclusively within the control group during the early morning, morning, 
and night periods. Meanwhile, Table 7 displays the significant differences in average activity within the control 
group during the early morning, the significant differences in maximum activity during the early morning for the 
condition group. These findings suggest variations in activity levels across different times of the day, highlighting 
potential temporal patterns in motor behavior.

TABLE 6. Statistical results of the maximum motor activity comparison within the control group during early morning and 
morning periods.

 

 

Early 
mornings W-value P-value Mornings W-value P-value Nights W-value P-value 

2 vs 11 64 0.02456 2 vs5 150 1.81E-
02 1 vs 4 142.5 3.84E-

02 
3 vs 11 66 0.0312 4 vs 5 150 1.81E-

02 1 vs 5 150 1.81E-
02 

6 vs 11 66 0.0312 5 vs 10 75 1.81E-
02 4 vs 8 82.5 3.84E-

02 
8 vs 11 65 0.02771 - - - 5 vs 8 75 1.81E-

02 
10 vs 11 66 0.03117 - - - - - - 
11 vs 13 166 0.01509 - - - - - - 
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TABLE 7. Statistical results of the mean motor activity comparison within the control group during early morning period and 
the maximum motor activity comparison within the condition group during early morning period.

 

 

Control group mean motor activity Condition group maximum motor 
activity 

Early 
mornings W-value P-value Early 

mornings W-value P-value 

7 vs 11 64 0.04644 2 vs 7 156 0.044 
8 vs 11 62 0.03805 7 vs 10 68 0.03931 

11 vs 13 162 0.04206 - - - 
 

Regarding the section on training, testing, and validation of different classification methods, considering the key 
features chosen through "forward selection features". The resulting features were as follows: "maximum value 
night 1", "maximum value afternoon 2", "maximum value afternoon 1", "maximum value night 8", "maximum value 
afternoon 3", "maximum value afternoon 5", "maximum value afternoon 10", "maximum value afternoon 8", "max-
imum value morning 4", and "maximum value morning 2". Below are the various performances of each individual 
algorithm, as well as the final model using 3 and 10 variables extracted with Galgo (Figure 5).

FIGURE 5. Feature selection using forward selection with the Galgo package. The graphs illustrate the average fitness of the 
different classification algorithms involved: A) Random Forest, B) KNN, C) SVM, and D) Neural Networks. Additionally, they 

show the accuracy of the models for classifying depressive and non-depressive subjects, as well as the number and names of 
the most relevant variables for classification. The results indicate that after selecting 10 features, the accuracy of the 

different algorithms begins to decline.
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TABLE 8. Evaluation metrics for different classification methods using 3 most relevant features.

 

 

 

 

Model Sensitivity Specificity Accuracy MCC 
RF 100.00 % 100.00 % 100.00 % 1 

KNN 100.00 % 100.00 % 100.00 % 1 
SVM 100.00 % 100.00 % 100.00 % 1 

NNET 100.00 % 100.00 % 100.00 % 1 
STACK 100.00 % 100.00 % 100.00 % 1 

RF Synthetic data 96.66 % 100.00 % 93.30 % 0.707 
KNN synthetic data 96.66 % 100.00 % 93.30 % 1 
SVM synthetic data 80.20 % 77.00 % 83.00 % 0.707 

NNET synthetic data 96.66 % 100.00 % 93.33 % 0.707 
STACK synthetic data 96.66 % 100.00 % 93.33 % 1 

 

The decrease in accuracy, sensitivity, and specificity is observed during the "blind" test with synthetic data n=30 
as seen on table 8. While the evaluation metrics of different classification methods vary, it is evident that the final 
model, based on predictions from previous models, achieves an accuracy of 96.66 %.

TABLE 9. Evaluation metrics for different classification methods using the top 10 most relevant features.

 

 

Model Sensitivity Specificity Accuracy MCC 
RF 100.00 % 100.00 % 100.00 % 1 

KNN 100.00 % 100.00 % 100.00 % 1 
SVM 100.00 % 100.00 % 100.00 % 1 

NNET 100.00 % 100.00 % 100.00 % 1 
STACK 100.00 % 100.00 % 100.00 % 1 

RF Synthetic data 96.66 % 100.00 % 93.30 % 0.707 
KNN synthetic data 96.66 % 100.00 % 93.30 % 1 
SVM synthetic data 80.20 % 77.00 % 83.00 % 0.707 

NNET synthetic data 96.66 % 100.00 % 93.33 % 0.707 
STACK synthetic data 96.66 % 100.00 % 93.33 % 1 

 

 The decrease in accuracy, sensitivity, and specificity is observed during the "blind" test with synthetic data n=30 
table 9. The evaluation metrics of different classification methods vary, it is noteworthy that the final model, based 
on predictions from previous models, achieves 100% accuracy. However, something alarming is the drastic decrease 
in the performance of the SVM classification model.

In this study, motor activity data from the dataset published by García-Ceja[6] were analyzed to compare different 
classification methods using machine learning techniques and to obtain useful data through data mining practices, 
also considering previous research and the findings reported by Rodríguez et al.[3]. In terms of descriptive statistics, 
significant differences (p < 0.05) were found between the movement of healthy individuals and those affected by 
depression, mainly during the day, afternoon, and night periods. Several neurobiological and psychological mecha-
nisms may explain why the control group exhibits greater motor activity than the condition group. First, depression 
is associated with dysregulation of neurotransmitter systems, particularly dopaminergic and serotonergic path-
ways, which play a crucial role in motivation, reward processing, and motor function. Reduced dopamine levels, 
especially in the mesolimbic and mesocortical pathways, can lead to decreased goal-directed behavior and physical 
activity. Similarly, serotonin dysfunction has been linked to fatigue and reduced psychomotor speed[12], hypoactiv-
ity in the prefrontal lobe (dorsal medial prefrontal cortex [dmPFC], ventral medial prefrontal cortex [vmPFC], and 
dorsal lateral prefrontal cortex [dlPFC], ventral lateral prefrontal cortex [vlPFC], orbital frontal cortex [OFC])[33] 
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regions involved in movement initiation and executive function, has been observed in individuals with depression. 
This reduced neural activity may contribute to slower movement, decreased exploration, and a general lack of phys-
ical engagement. Additionally, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, leading to chronic 
stress and elevated cortisol levels, has been shown to negatively affect energy levels and contribute to fatigue, fur-
ther reducing motor activity[14].

From a behavioral perspective, individuals with depression may experience anhedonia, a decreased ability to expe-
rience pleasure, leading to reduced engagement in activities that typically require movement or physical effort. This 
aligns with the behavioral inhibition system (BIS) theory, which suggests that increased sensitivity to negative stim-
uli in depression leads to avoidance behavior and decreased motor output[34].

The results reported in this study regarding the predictive capacity of movements recorded through accelerome-
ters in conjunction with the application of different machine learning algorithms suggest that models like RF, KNN, 
and SVM are well-performance tools that can achieve accuracy above 96 % in the classification of mental illnesses, 
similar to what Vahia et al.[4], mention in their research on monitoring systems related to MDD. However, the imple-
mentation of ensemble models provides the possibility of making predictions with stronger support[35]. While this 
article mentions 100 % accuracy with the final ensemble model, it is recommended to reproduce the model, if pos-
sible, with a more representative sample, and conduct power tests.

CONCLUSIONS

The objectives of this study were the statistical analysis of the data provided by the dataset proposed by Garcia et 
al.[6], as well as the comparison of the performance of different machine learning models for the classification 
between depressive and non-depressive subjects based on the motor activity during daily activities over days. 
Contrasting the findings of this work with those mentioned earlier, it is concluded that motor activity is a viable 
parameter for identifying depressive behaviors. The significant differences between healthy and depressive subjects 
indicate a significant reduction in movements by those affected by this condition, a possible effect of apathy on 
human behavior.

Regarding the performances of the different machine learning models, although the algorithms showed perfor-
mances greater than 96 % with the data extracted from the original dataset, these metrics significantly decreased 
when subjected to new synthetic blind data. However, in both cases, the stacked model showed an improvement in 
the classification of different groups, achieving an accuracy of 100 % considering 10 relevant features for the differ-
ent prediction methods. Nevertheless, it is recommended to increase the sample size, as having so few data points 
can lead to overfitting issues.
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