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ABSTRACT

This paper presents the development of a computational model of the

cochlea using a new solution by resonance analysis to the models of

fluid mechanics in the cochlea and the basilar membrane as a system

of forced harmonic oscillators proposed by Lesser and Berkeley. The

computational model of resonance analysis is successfully compared

with the method of numerical integration developed by Peterson

and Bogert, the method of Green function proposed by Allen, the

method of finite difference described by Neely and the measurements

obtained in the experiments of Békésy, getting the same results with

the new solution developed. Its contribution regarding the different

solutions already found in the literature is to obtain a frequency-

distance function to identify the maximum amplitude of displacement

of each section along the basilar membrane for each specific excitation

frequency in the hearing system. The model developed presents the

advantage over the previous solutions, that the function obtained

depends only of the physical characteristics of mass per unit area,

damping coefficient and stiffness per unit area along the basilar

membrane, and is the first time that the resonance analysis is used

to obtain a methodology consistent with the place theory of hearing of

Békésy.

Keywords: resonance analysis, basilar membrane, cochlea, inner

ear.
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RESUMEN

En este trabajo de investigación se propone una nueva solución a partir del

análisis por resonancia del modelo de mecánica de fluidos de la cóclea y

su solución del comportamiento de la membrana basilar como un sistema

de osciladores armónicos forzados propuesto por Lesser y Berkeley. El

modelo computacional del análisis por resonancia se compara en forma

satisfactoria con el método de integración numérica desarrollado por

Peterson y Bogert, con el método de la función de Green propuesto por

Allen, con el método de diferencias finitas propuesto por Neely y con las

mediciones experimentales de Békésy, obteniendo los mismos resultados

a partir de la nueva solución desarrollada. Su aportación respecto a las

diferentes soluciones ya encontradas en la bibliograf́ıa, es obtener una

relación frecuencia-distancia que permite identificar la distancia a la que

ocurre la amplitud máxima de resonancia a lo largo de la membrana basilar

para cada frecuencia espećıfica de excitación al sistema auditivo. El modelo

desarrollado tiene la ventaja de depender sólo de las caracteŕısticas f́ısicas

a lo largo de la membrana basilar de: coeficiente de elasticidad, factor de

amortiguamiento y masa por unidad de área; siendo la primera vez que se

emplea el análisis por resonancia para obtener una metodoloǵıa concordante

en su totalidad con la teoŕıa de los puntos de audición de Békésy.

Palabras clave: análisis por resonancia, membrana basilar, cóclea, óıdo

interno.

INTRODUCTION

In this paper we develop a computational model
of the cochlea using a new solution by resonance
analysis for the model of fluid mechanics in
the cochlea and the basilar membrane as a
system of forced harmonic oscillators proposed
by Lesser and Berkeley [1], the goal is to obtain a
relation for determining the maximum amplitude
displacement along the basilar membrane to an
input stimulus in the auditory system, which
is dependent of the physical characteristics of
mass, damping and stiffness along the basilar
membrane.

The shape and structure of the cochlea
is similar to a snail longitudinal divided into
three compartments: the scala vestibuli which
is in contact with the oval window, whereby
acoustic waves are transmitted from the middle
ear to the inner ear, the scala tympani which is

communicated with the round window, and the
scala media located between the other two scales.
The physical modeling of the cochlea as a system
of fluid mechanics is necessary because the scala
vestibuli and the scala tympani are filled with
an incompressible fluid clear and viscous called
perilymph, and the scala media is filled with a
fluid called endolymph. Structurally the scale
media and the scala vestibuli are separated by
Reissner’s membrane and the scala media is
separated from the scala tympani by the basilar
membrane [2] [3].

The functioning of the auditory system
consist in that the vibrations of sound are
transmitted through the middle ear and
channeled through the oval window into the
scala vestibuli, the resulting waves within
the perilymph travel along the scala vestibuli
creating waves complementary in the basilar
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membrane and the scala tympani. The
transduction of the acoustic waves into electrical
impulses takes place in the organ of Corti, which
is placed on top of the basilar membrane. In the
organ of Corti are the hair cells, when the waves
on the basilar membrane generate a force on the
hair cells this cause a change in their potential,
which is transmitted through the auditory nerves
directly to the brain where the interpretation is
performed for different frequencies. Each part
of basilar membrane responds to the maximum
value of the crest of the wave envelope and
therefore it is considered that the mechanism
of the cochlea determines the frequency of the
input signal from the place where the basilar
membrane has a maximum amplitude, this is
known as place theory of hearing of Békésy [3]
[4].

The first mechanical theory of the cochlea
was proposed by Peterson and Bogert in 1950,
was based on the hydrodynamic considering the
cochlea as a system of two channels that vary
in shape similar in cross section and separated
by an elastic membrane with constant dynamic
variables, for modeling were used the parameters
reported in the experimental work of Békésy
[5]. In the following years theories about the
mechanics of the cochlea were developed, but
in 1971 Rhode present physical measurements
supported in the physiology of this organ,
and the theories that were proposed previously
found to be inadequate [6] [7]. Later in
1972, Lesser and Berkley developed a model
that matches all the observations previously
reported, modeling to the cochlea as a system
of fluid mechanics and the basilar membrane
as a system of forced harmonic oscillators
concatenated [1]. In 1976 Allen uses the Lesser
and Berkley model to obtain the parameters of
the basilar membrane using the Green’s function,
obtaining an approximate set of parameters
of their behavior [8]. Later in 1981 Neely
proposed a two-dimensional mathematical model
of the cochlea, and their numerical solution
using finite difference approximations using
Laplace’s equation, obtaining up to now the best
parameters of the mechanical response of the
cochlea [9].

The solution to the model of the basilar

membrane as a system of forced harmonic
oscillators has been proposed in numerical form
from the potential flow modeling using Fourier
series by Lesser and Berkeley in 1972 [1]. Later
in 1974 Siebert generalizes the solution of Lesser
and Berkley considering a mechanical force at
the two ends of the basilar membrane [10], a
similar solution was found in 1981 by Peskin [11].
The following studies considered the physical
structure of the basilar membrane to solve the
model, emphasizing studies in 1984 by Rhode
[12], in 1985 by Hudspeth [13] and 1996 by
Boer [14]. In recent years have been developed
solutions considering state space models, in 2007
by Elliott et al. [15] and 2008 by Ku et
al. [16]. In this research aims to provide a
new solution using resonance analysis, which
has the advantage over the solutions mentioned
above to determine the distance of the maximum
amplitude along the basilar membrane for each
excitation frequency of the system.

FLUID MECHANICS IN THE
COCHLEA

The movement of fluids in the cochlea can
be described from the equations of motion
for an incompressible and viscous fluid,
considering that the cochlea is divided into
two rectangular compartments, separated by
the basilar membrane and filled with a fluid
of similar characteristics to the perilymph and
endolymphm [3]. The upper compartment
corresponds to the scala vestibuli and the lower
compartment corresponds to the scala tympani,
for simplicity the scala media is omitted. Figure
1 shows the diagram of the fluid mechanics in
the cochlea, showing the boundary conditions of
displacement in the basilar membrane.

The fluid in the cochlea is incompressible and
present homogeneous characteristics, where the
fluid velocity is u = (u1, u2, u3) and the mass of
fluid is constant with a pressure P and density
ρ. Therefore the volume V of the fluid only can
change due to the variation of fluid flow in a
cross section for a given time, having an equal
on both volumes which depends on the variables
mentioned.
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physical structure of the basilar membrane to solve the model, emphasizing studies in 1984 by Rhode [12], in 1985 

by Hudspeth [13] and 1996 by Boer [14]. In recent years have been developed solutions considering state space 

models, in 2007 by Elliott et al. [15] and 2008 by Ku et al. [16]. In this research aims to provide a new solution using 

resonance analysis, which has the advantage over the solutions mentioned above to determine the distance of the 

maximum amplitude along the basilar membrane for each excitation frequency of the system. 

II. FLUID MECHANICS IN THE COCHLEA 

The movement of fluids in the cochlea can be described from the equations of motion for an incompressible and 

viscous fluid, considering that the cochlea is divided into two rectangular compartments, separated by the basilar 

membrane and filled with a fluid of similar characteristics to the perilymph and endolymphm [3]. The upper 

compartment corresponds to the scala vestibuli and the lower compartment corresponds to the scala tympani, for 

simplicity the scala media is omitted. Figure 1 shows the diagram of the fluid mechanics in the cochlea, showing the 

boundary conditions of displacement in the basilar membrane. 

 

 
Fig. 1. Fluid mechanics in the cochlea. 

 

The fluid in the cochlea is incompressible and present homogeneous characteristics, where the fluid velocity is 

𝒖 = 𝑢!, 𝑢!, 𝑢!  and the mass of fluid is constant with a pressure 𝑃 and density 𝜌. Therefore the volume 𝑉 of the fluid 

only can change due to the variation of fluid flow in a cross section for a given time, having an equal on both volumes 

which depends on the variables mentioned. 

 

𝑑
𝑑𝑡

𝜌𝑑𝑉
!

= − 𝜌 𝒖 ∙ 𝒏 𝑑𝑆 = 0
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Where 𝑆 is the surface area of the volume 𝑉 and 𝒏 = 𝑛!, 𝑛!, 𝑛!  is the unit outward normal volume. Similarly the 

fluid in a fixed domain 𝑉 can change only in response to forces applied to the flow crosses in the domain boundaries. 

Then for a viscous fluid is considered the conservation of the moment as follows 
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Using the divergence theorem for convert surface integrals to volume integrals, thus 

 

Fig. 1. Fluid mechanics in the cochlea.

d

dt

∫
V

ρdV = −
∫
S

ρ(u · n)dS = 0 (1)

Where S is the surface area of the volume V
and n = (n1, n2, n3) is the unit outward normal
volume. Similarly the fluid in a fixed domain V
can change only in response to forces applied to
the flow crosses in the domain boundaries. Then
for a viscous fluid is considered the conservation
of the momentum as follows

d

dt

∫
V

ρuidV = −
∫
S

[ρui(u · n) + pni] dS (2)

Using the divergence theorem for convert
surface integrals to volume integrals, thus∫

V

(
ρ
∂ui
∂t

+ ρ∇ · (uiu) +
∂p

∂xi

)
dV = 0 (3)

∫
V

∇ · udV = 0 (4)

Considering that the volume is arbitrary, we
obtain

ρ
∂u

∂t
+ ρ(∇ · u)u +∇p = 0 (5)

∇ · u = 0 (6)

When the movement of fluid have small
amplitudes is possible ignore the nonlinear terms
in the cochlea, yielding

ρ
∂u

∂t
+∇p = 0 (7)

∇ · u = 0 (8)

An important special case is when u = ∇φ for
some potential in an irrotational flow, leaving the
above equations of the form

ρ
∂φ

∂t
+ p = 0 (9)

∇2φ = 0 (10)

THE BASILAR MEMBRANE
AS A HARMONIC

OSCILLATOR

In their work Lesser y Berkeley proposed that
one way to model the physical behavior of the
cochlea is to combine the equations 9 and 10 with
the equation of a forced harmonic oscillator [1].
If one considers the pressure value as an arbitrary
constant in the upper and lower compartments
of the basilar membrane, there are two copies of
the two equations given above

ρ
∂φ1

∂t
+ p1 = ρ

∂φ2

∂t
+ p2 = 0 (11)

∇2φ1 = ∇2φ2 = 0 (12)

Each point on the basilar membrane can be
modeled as a harmonic oscillator with m(x)
mass per unit area, Rm(x) damping coefficient
and k(x) stiffness per unit area, which vary
along the membrane. In this condition, the
movement of each part along the membrane is
considered to be independent of the movement of
neighboring parts, assuming no lateral coupling
[1]. The deflection of the membrane is then
a one-dimensional wave equation η(x, t) which
is the solution for forced harmonic oscillator
equation, is specific by

m(x)
∂2η

∂t2
+Rm(x)

∂η

∂t
+k(x)η = p2(x, η, t)−p1(x, η, t)

(13)
The vertical displacement of the membrane is
small and therefore the force is considered as
the difference of pressure between the point y =
0 and the maximum y = η. This simplifies
the harmonic oscillator equation can specify the
boundary conditions. If we consider that the
fluid velocity ∂φ/∂t is the component y and
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therefore the boundary conditions on the basilar
membrane, thus

∂η

∂t
=
∂φ1

∂y
=
∂φ2

∂y
, y = 0, 0 < x < L (14)

If there is no vertical motion at the top, thus we
have

∂φ1

∂y
= 0 y = l, 0 < x < L (15)

Although there are many ways to excite
externally an oscillator forced, is considered that
the system is excited by a movement of the stapes
in contact with the window oval. Since ∂φ/∂x
is the x component of the fluid velocity, the
boundary condition at x = 0 is

∂φ1

∂x
=
∂F (y, t)

∂t
0 < y < l (16)

Where F (y, t) is the horizontal displacement of
the oval window, whereas there is no horizontal
motion at the far end, so that x = L

∂φ1

∂x
= 0 0 < y < l (17)

RESONANCE ANALYSIS OF
THE COCHLEA

A new solution to the model of Lesser y
Berkeley can be developed using the resonance
analysis from the equation of forced oscillator
described by equation 13. This solution has
the advantage of determining the maximum
amplitude of displacement by resonance for
each section along the basilar membrane, which
depend on the characteristics of their mass per
unit area, damping coefficient and stiffness per
unit area.

To perform the analysis we considers each
section of the membrane as a forced harmonic
oscillator isolated, which is excited by an
external force Fejωt that representing the driving
force on each section of the basilar membrane,
this force is produced by vibration transmitted
into the cochlea by the oval window. The
differential equation describing the resulting

motion of the system is as follows

m(x)
∂2η

∂t2
+Rm(x)

∂η

∂t
+ k(x)η = Fejωt (18)

Where F is the magnitude of the driving force
and ω its angular frequency. This implies
that the driving force Fejωt is periodic and
complex, therefore can be considered that the
displacement η is also complex, and then the
solution of the differential equation is defined by
displacement η = Aejωt, where A is the complex
amplitude. Substituting the displacement,
its first derivative and second derivative and
considered η as common factor, we obtain an
equation that models the displacement as a
function of the other terms

η =
1

jω

Fejωt

Rm(x) + j
(
ωm(x)k(x)

ω

) (19)

The above equation can be expressed in a simpler
form defining complex mechanical impedance as
follows

Zm(x) = Rm(x) + jXm(x) (20)

Where the mechanical reactance is defined by the
following

Xm(x) = ωm(x)− k(x)

ω
(21)

The mechanical impedance may also be
expressed in polar form Zm(x) = Zm(x)ejΘ(x),
then taking an equation in terms of magnitude
and one that determines the phase angle.

Zm(x) =
√

(Rm(x)2 +Xm(x)2) (22)

Θ(x) = tan−1 Xm(x)

Rm(x)
(23)

From equations 22 and 23 we can write the
displacement complex in the form.

η =
1

jω

Fejωt

Zm(x)ejΘ(x)
(24)

The equation 24 is simplified to a single
exponential term reducing algebraically as
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follows.

η =
1

jω

F

Zm(x)
ej(ωt−Θ(x)) (25)

Then we proceed to obtain the real part and
complex part using Euler’s identity

η =
1

jω

F

Zm(x)
[cos(ωt−Θ(x)) + j sin(ωt−Θ(x))]

(26)
And therefore the displacement of each
membrane section is defined by the real part
of the equation 26.

η =
F

ωZm(x)
sin(ωt−Θ(x)) (27)

In equation 27 the amplitude is defined by A =
F/ωZm(x) and can be expressed algebraically
in terms of mass, damping and stiffness, by the
following expression

A =
F/m(x)√(

ω2 − k(x)
m(x)

)2
+ ω2 Rm(x)2

m(x)2

(28)

The equation 28 shows that the amplitude for
each section of the membrane depends of the
frequency ω in the applied force. The amplitude
has a maximum when the denominator has
its minimum value, this occurs at a specific
frequency excitation called resonance frequency,
which is defined by the values of mass and
stiffness, when the frequency ω of the applied
force is equal to k(x)/m(x), we said that the
system is resonant in amplitude and we obtain
the maximum value of displacement of the
basilar membrane.

COMPUTATIONAL MODEL
OF THE COCHLEA

Equation 28 can be expressed as a function of
frequency and distance, if we consider that ω =
2πf , thus we have

A(x, f) =
F/m(x)√(

4π2f2 − k(x)
m(x)

)2
+ 4π2f2 Rm(x)2

m(x)2

(29)

The equation 28 shows that the amplitude for each section of the membrane depends of the frequency 𝜔 in the 

applied force. The amplitude has a maximum when the denominator has its minimum value, this occurs at a specific 

frequency excitation called resonance frequency, which is defined by the values of mass and stiffness, when the 

frequency   𝜔 of the applied force is equal to 𝑘 𝑥 𝑚 𝑥 , we said that the system is resonant in amplitude and we 

obtain the maximum value of displacement of the basilar membrane.  

V. COMPUTATIONAL MODEL OF THE COCHLEA 

Equation 28 can be expressed as a function of frequency and distance, if we consider that 𝜔 = 2𝜋𝑓, thus we have 
 

𝐴 𝑥, 𝑓 =
𝐹/𝑚 𝑥

4𝜋!𝑓! − 𝑘 𝑥
𝑚 𝑥

!
+ 4𝜋!𝑓! 𝑅! 𝑥 !

𝑚 𝑥 !

                                                                                                                        (29) 

 
From equation 29 we develop a computational model to obtain the distance where occurs the maximum 

displacement of the basilar membrane to a specific excitation frequency of the system, which depends of the physical 

characteristics of the basilar membrane. The figure 2 shows the block diagram of the computational model of the 

cochlea using resonance analysis. 

 

 
 

Fig. 2. Computational model of the cochlea using resonance analysis. 
 
The value of the magnitude of the external excitation force is considered normalized because the magnitude 

variation does not change the position along of the basilar membrane where the maximum value of displacement is 

obtained. 

VI. EXPERIMENTS AND RESULTS 

The computational model of the cochlea by resonance analysis is compared with the results obtained in the works 

of Peterson and Bogert [5], Allen [8] and Neely [9], using the parameters of mass, damping and stiffness along the 

basilar membrane for each of the models. For the realization of the experiments are considered the same 

frequencies of assessment used in the original articles in order to make the comparison with the results obtained 

from the analysis by resonance. In the proposed methodologies were chosen these frequencies because are in the 

range of maximum sensitivity within the human audibility threshold. The Table I shows the respective parameters. 

Fig. 2. Computational model of the cochlea using
resonance analysis.

From equation 29 we develop a
computational model to obtain the distance
where occurs the maximum displacement of
the basilar membrane to a specific excitation
frequency of the system, which depends of the
physical characteristics of the basilar membrane.
The figure 2 shows the block diagram of the
computational model of the cochlea using
resonance analysis.

The value of the magnitude of the external
excitation force is considered normalized because
the magnitude variation does not change the
position along of the basilar membrane where the
maximum value of displacement is obtained.

EXPERIMENTS AND
RESULTS

The computational model of the cochlea by
resonance analysis is compared with the results
obtained in the works of Peterson and Bogert
[5], Allen [8] and Neely [9], using the parameters
of mass, damping and stiffness along the basilar
membrane for each of the models. For the
realization of the experiments are considered
the same frequencies of assessment used in the
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original articles in order to make the comparison
with the results obtained from the analysis by
resonance. In the proposed methodologies were
chosen these frequencies because are in the
range of maximum sensitivity within the human
audibility threshold. The Table I shows the
respective parameters.

The computational model of the cochlea by
resonance is first compared with the model of
Peterson and Bogert. This is evaluated in
the frequency range of 20 Hz to 12000 Hz in
increments of 1 Hz and in the range of distances
of 0.001 cm to 3.300 cm in increments of 0.001
cm. We obtain for each distance a maximum
amplitude value, which depends of the excitation
frequency. The table II shows the comparison
between the two results.

In Figure 3 we show the graph of resonance
analysis for the value of frequency 1000 Hz.
Because the model Peterson and Bogert not
model the damping, the graph has a closed
behavior on the x axis for each frequency value.

The results confirm the similarity between
the resonance analysis and the method of
numerical integration developed by Peterson and
Boger.

TABLE I 
PARAMETERS OF THE BASILAR MEMBRANE 

    Model            Parameter        Value 

 mass (g/cm2) 0.143 
Peterson damping (dyna·s/cm2) 

stiffness 
0 

1.72 ∙ 10!𝑒!!!  

   
 mass (g/cm2) 0.1 

Allen damping (dyna·s/cm2) 
stiffness 

300𝑒!!" 
10!𝑒!!!" 

   
 mass (g/cm2) 0.15 

Neely damping (dyna·s/cm2) 
stiffness 

200 
10!𝑒!!! 

   

 

The computational model of the cochlea by resonance is first compared with the model of Peterson and Bogert. 

This is evaluated in the frequency range of 20 Hz to 12000 Hz in increments of 1 Hz and in the range of distances of 

0.001 cm to 3.300 cm in increments of 0.001 cm. We obtain for each distance a maximum amplitude value, which 

depends of the excitation frequency. The table II shows the comparison between the two results.  

 
TABLE II 

RESONANCE ANALYSIS USING THE PARAMETERS OF PETERSON 

 
Frequency 

(Hz) 

Peterson et al. 
Numerical 
integration 

Distance (cm) 

 
Resonance analysis 

Distance (cm) 

1000 2.833 2.860 
3610 1.700 1.709 

10000 0.562 0.557 

 

In the figure 3 we shows the graph of resonance analysis for the value of frequency 1000 Hz. Because the model 

Peterson and Bogert not model the damping, the graph has a closed behavior on the x axis for each frequency value. 

 

 
Fig. 3. Resonance analysis with Peterson parameters (f = 1000 Hz). 

 

The results confirm the similarity between the resonance analysis and the method of numerical integration 

developed by Peterson and Boger. 

The computational model of the cochlea is also compared with the model of Allen and evaluated with the 

parameters described in his work considering the value of 𝑎 = 1.5. This is evaluated in the range of excitation 

Fig. 3. Resonance analysis with Peterson
parameters (f = 1000 Hz).

The computational model of the cochlea is
also compared with the model of Allen and
evaluated with the parameters described in his
work considering the value of a = 1.5. This is
evaluated in the range of excitation frequencies
from 20 Hz to 12000 Hz in increments of 1 Hz
and in the range of distances of 0.0001 cm to
3.5000 cm in increments of 0.0001 cm. Table III
shows the results obtained by both models with
the same frequencies.

Table I. Parameters of the basilar membrane

Model Parameter Value

Peterson mass (g/cm2) 0.143
damping 0

(dyna·s/cm2) stiffness 1.72× 109e−2x

Allen mass (g/cm2) 0.1
damping 300e−ax

(dyna·s/cm2) stiffness 109e−2ax

Neely mass (g/cm2) 0.15
damping 200

(dyna·s/cm2) stiffness 109e−2x

Table II. Resonance analysis using the parameters of Peterson

Frequency Peterson et al. Numerical integration Resonance analysis
(Hz) Distance (cm) Distance (cm)

1000 2.833 2.860
3610 1.700 1.709
10000 0.562 0.557
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frequencies from 20 Hz to 12000 Hz in increments of 1 Hz and in the range of distances of 0.0001 cm to 3.5000 cm 

in increments of 0.0001 cm. Table III shows the results obtained by both models with the same frequencies. 
 

TABLE III 
RESONANCE ANALYSIS USING THE PARAMETERS OF ALLEN 

 
Frequency 

(Hz)  

Allen 
Green function 
Distance (cm) 

 
Resonance analysis 

Distance (cm) 
100 3.5000 3.61000 
200 3.1500 3.15000 
500 2.5375 2.53800 

1000 2.1000 2.07550 
2000 1.5750 1.61350 
5000 0.9625 1.00260 

10000 0.4666 0.54055 

 

The figure 4 shows the result of the resonance analysis for the frequency of 1000 Hz, the graphic shows the 

difference in behavior for a model with damping respect to a model without damping like the model of Peterson and 

Bogert. 

 
Fig. 4. Resonance analysis with Allen parameters (f = 1000 Hz). 

 

Equality is observed in all results, which means that the same values are obtained using different processes, 

taking in one case the Green function and the other resonance analysis. 

Next the resonance computational model is compared with the model of Neely, this is evaluated in the frequency 

range of 20 Hz to 10000 Hz in increments of 1 Hz and in the range of distances of 0.00001 to 3.50000 in increments 

of 0.00001 cm. The table IV shows the results of both models for the same frequencies. 
  

TABLE IV 
RESONANCE ANALYSIS USING THE PARAMETERS OF NEELY 

 
Frequency 

(Hz)  

Neely 
Finite differences 

Distance (cm) 

 
Resonance analysis 

Distance (cm) 
400 3.250 3.41500 
570 2.875 3.09300 
800 2.625 2.77000 

1130 2.375 2.43400 
1600 2.000 2.09000 
2260 1.625 1.74700 
3200 1.375 1.40020 
4520 1.000 1.05560 
6390 0.700 0.70950 
9040 0.375 0.36281 

 

Fig. 4. Resonance analysis with Allen
parameters (f = 1000 Hz).

The figure 5 shows the graph of resonance analysis for the value of frequency 1130 Hz. The behavior is similar to 

the model of Allen which corresponds to a system with damping. 

 

 
Fig. 5. Resonance analysis with Neely parameters (f = 1130 Hz). 

 
Similar to previous models there is equality between the results obtained by both processes, either using finite 

differences or resonance analysis.  

The three graphs compare satisfactorily the physical behavior of the basilar membrane using resonance analysis 

with the values obtained in the three different methodologies show the physical response of the system in the 

frequency domain. 

Finally the table V shows the comparison between the resonance analysis and the results of pathological 

observations by Békésy. 

 
TABLE V 

RESONANCE ANALYSIS AND BÉKÉSY RESULTS 

 
Frequency 

(Hz)  

Békésy 
Experimental 

results 
Distance (cm) 

Resonance analysis 
Parameters of Neely 

Distance (cm) 

400 3.2 3.4150 
700 2.8 2.8990 

1000 2.5 2.5530 
2000 1.8 1.8684 

 

In the last test we used the parameters of Neely because they are the best approximated to the behavior of the 

cochlea until today. 

VII. CONCLUSION 

The studies of the inner ear are based in the hydrodynamics of the cochlea, the mechanical movement of the 

basilar membrane and the biological processes in the inner ear, however do not provide a relationship between the 

excitation frequency to the auditory system and the distance along the basilar membrane in which is presents the 

maximum displacement of amplitude. 

This new computational model of the cochlea provides this relationship, is developed from the fluid mechanics in 

the cochlea and their solution of the behavior of the basilar membrane as a set of harmonic oscillators forced 

proposed by Lesser and Berkeley, obtaining the relationship frequency-distance using the resonance analysis. 

Fig. 5. Resonance analysis with Neely
parameters (f = 1130 Hz).

Table III. Resonance analysis using the parameters of Allen

Frequency Allen Green’s function Resonance analysis
(Hz) Distance (cm) Distance (cm)

100 3.5000 3.61000
200 3.1500 3.15000
500 2.5375 2.53800
1000 2.1000 2.07550
2000 1.5750 1.61350
5000 0.9625 1.00260
10000 0.4666 0.54055

Table IV. Resonance analysis using the parameters of Neely

Frequency Neely Finite differences Resonance analysis
(Hz) Distance (cm) Distance (cm)

400 3.250 3.41500
570 2.875 3.09300
800 2.625 2.77000
1130 2.375 2.43400
1600 2.000 2.09000
2260 1.625 1.74700
3200 1.375 1.40020
4520 1.000 1.05560
6390 0.700 0.70950
9040 0.375 0.36281

Figure 4 shows the result of the resonance
analysis for the frequency of 1000 Hz, the graphic
shows the difference in behavior for a model with
damping respect to a model without damping
like the model of Peterson and Bogert.

Equality is observed in all results, which
means that the same values are obtained using
different processes, taking in one case the Green’s
function and the other resonance analysis.



Jiménez-Hernández et al. Computational model of the cochlea using resonance analysis 85

Table V. Resonance analysis using the parameters of Békésy

Frequency Békésy Resonance analysis
(Hz) Experimental results Parameters of Neely

Distance (cm) Distance (cm)

400 3.2 3.4150
700 2.8 2.8990
1000 2.5 2.5530
2000 1.8 1.8684

Next the resonance computational model
is compared with the model of Neely, this is
evaluated in the frequency range of 20 Hz to
10000 Hz in increments of 1 Hz and in the range
of distances of 0.00001 to 3.50000 in increments
of 0.00001 cm. The table IV shows the results of
both models for the same frequencies.

Figure 5 shows the graph of resonance
analysis for the value of frequency 1130 Hz. The
behavior is similar to the model of Allen which
corresponds to a system with damping.

Similar to previous models there is equality
between the results obtained by both processes,
either using finite differences or resonance
analysis.

The three graphs compare satisfactorily the
physical behavior of the basilar membrane using
resonance analysis with the values obtained
in the three different methodologies show the
physical response of the system in the frequency
domain.

Finally Table V shows the comparison
between the resonance analysis and the results
of pathological observations by Békésy.

In the last test we used the parameters of
Neely because they are the best approximated
to the behavior of the cochlea until today.

CONCLUSION

The studies of the inner ear are based in the
hydrodynamics of the cochlea, the mechanical
movement of the basilar membrane and the
biological processes in the inner ear, however
do not provide a relationship between the
excitation frequency to the auditory system and
the distance along the basilar membrane in
which is presents the maximum displacement of
amplitude.

This new computational model of the cochlea
provides this relationship, is developed from the
fluid mechanics in the cochlea and their solution
of the behavior of the basilar membrane as a
set of harmonic oscillators forced proposed by
Lesser and Berkeley, obtaining the relationship
frequency-distance using the resonance analysis.

This new solution has the advantage over
the previous solutions of determined from the
physical characteristics of mass per unit area,
damping coefficient and stiffness per unit area
along the basilar membrane, the distance of
maximum amplitude by resonance for each
frequency of excitation.

The results of the computational model by
resonance were compared satisfactorily with the
obtained analytically by Peterson and Bogert
using numerical integration (Table II), the
method of the Green function of Allen (Table
III), the approximation by finite difference of
Neely (Table IV) and the experimental results
obtaining by Békésy (Table V), being the new
model consistent with place theory of hearing.

The model developed presents the
disadvantage that at high frequencies near
to the base of the cochlea has a frequency-
distance relationship with abrupt increases in the
frequency domain, this is not significant because
the intervals of more intelligible are below to
4 kHz, for frequencies above of this range the
model should be evaluated based on increments
in octaves similar to how the auditory system
works.

The next stage of our research project is to
apply the model of resonance and the frequency-
distance function for to determine quantitatively
the distances along the cochlea where the
electrodes are positioned in cochlear implants.
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