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Coherence analysis of EEG in locomotion using graphs.

Análisis de coherencia de señales EEG en locomoción usando grafos.

G. Quiroz1, A. Espinoza-Valdez2, R.A. Salido-Ruiz2, L. Mercado1
1Universidad Autónoma de Nuevo León, FIME, Nicolás de los Garza, Nuevo León, México.

2Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, México.

ABSTRACT
One of the most interesting brain machine interface (BMI) applications, is the control of assistive devices for re-
habilitation of neuromotor pathologies. This means that assistive devices (prostheses, orthoses, or exoskeletons) 
are able to detect user motion intention, by the acquisition and interpretation of electroencephalographic (EEG) 
signals. Such interpretation is based on the time, frequency or space features of the EEG signals. For this reason, 
in this paper a coherence-based EEG study is proposed during locomotion that along with the graph theory allows 
to establish spatio-temporal parameters that are characteristic in this study. The results show that along with the 
temporal features of the signal it is possible to find spatial patterns in order to classify motion tasks of interest. In 
this manner, the connectivity analysis alongside graphs provides reliable information about the spatio-temporal 
characteristics of the neural activity, showing a dynamic pattern in the connectivity during locomotions tasks.
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RESUMEN
Una de las aplicaciones de las interfaces cerebro máquina (BMI, por las siglas en Inglés de brain machine interface) 
que en la actualidad han tenido mucho interés es el control de dispositivos de asistencia en rehabilitación de patolo-
gías neuromotrices. Esto es, que los dispositivos (prótesis, órtesis o exoesqueletos) tengan la capacidad de ejecutar 
la intención de movimiento del usuario, a través de la interpretación de las señales electroencefalográficas (EEG). 
Dicha interpretación se basa en el conocimiento de características en diferentes dominios de la señal EEG i.e., el 
dominio del tiempo, de la frecuencia o del espacio. Por tal motivo, en este trabajo proponemos un estudio sobre la 
coherencia de las señales EEG durante actividades de locomoción que, por medio de la teoría de grafos, nos permita 
establecer parámetros espacio-temporales característicos de las actividades motrices propuestas. Los resultados 
muestran que, además de las características temporales de la señal, es posible encontrar patrones espaciales que 
ayuden a clasificar las tareas motrices de interés. Esto es, el análisis de conectividad complementado con sus grafos 
asociados proporciona información confiable sobre las características espacio-temporales de la actividad neural, 
reflejando la dinámica de sus ajustes en correspondencia con distintos niveles de conectividad durante la marcha.
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INTRODUCTION
The main goal of brain machine interfaces (BMIs) is 

to provide a technological device in order to improve 
communication between brain and environment. 
According to the pathway of the neural information, 
BMIs are divided in efferent, afferent and bidirectional 
[1]. The first ones use neural information to decode 
motor intent, the extracted data is used afterwards to 
command an artificial actuator [2]. A efferent BMIs 
sense physical quantities from the environment and 
use such information to induce a stimulation in the 
brain (e.g. electrical microstimulation) [3,4]. 
Bidirectional BMIs are able to decode motor intention 
and encode sensory information to exchange it with 
the brain in a closed loop approach [5]. Nowadays BMIs 
are used in a wide variety of applications, from enter-
tainment [6,7] to therapeutics [8,9]. In the field of thera-
peutic applications, BMIs are assistive devices that 
enable patients with severe motor impairments to 
control external actuators such as prostheses, ortho-
ses or exoskeletons [10].

The restoration of locomotion in patients with low-
er-limb impairments using BCIs is a scientific and 
technological challenge. Currently one of the para-
digms is to provide lower limb wearable robots for 
physical movement assistance and rehabilitation such 
as disabled people can recover their locomotion capa-
bilities [11,12]. According to the efferent BMIs, the main 
idea is that the assistive device could be able to inter-
pret the motion intention of the patient and carried it 
out. The understanding of the neural activity during 
human locomotion is the key for the interpretation of 
voluntary motion which has been widely studied in 
recent years. Two approaches have been proposed: (i) 
classification of time and/or frequency features from 
electroencephalographic (EEG) recordings [13,14], and 
(ii) decoding of kinematic variables from the lower 
limbs from time-variant EEG frequency features [15-17]. 
Both schemes have been used to interpret EEG data 
mainly during well-controlled walking protocols [18-21].

Although time and frequency features of EEG have 
provided useful information to understand neural 
activity, current advances in Neuroscience have 
pointed out that human locomotion involves a highly 
complex neural control in various locations of the cen-
tral nervous system, including the planing and initia-
tion in supraespinal areas (cortex, basal ganglia, mid-
brain and hindbrain) as well as timings and patterns of 
locomotor movements at spinal cord [22]. At this point 
emerges the interest in knowing the spatial behavior 
of the neural activity. This has two main purposes, to 
obtain information about the user motion intention 
and, allowing in this way that assistive devices can 
reproduce more precisely the human movement. In 
order to deal with spatial analysis of the neural activ-
ity in locomotion, in this work it is proposed a study of 
the neural connectivity during locomotion, including 
speed changes, in order to seek spatial patterns and 
their evolution that allows us to classify motion tasks.

Here, connectivity is studied through the coherence 
analysis, because is a widely used methodology in dif-
ferent fields of Neuroscience [23-25], when functional 
connectivity between regions of the brain must be 
evaluated, and it can be useful to identify neuroana-
tomical and neurophysiological factors in EEG signals 
[26]. Also, the connectivity dynamics during locomo-
tion is evaluated via the graphs associated to the 
respective coherence matrices. The paper is organized 
as follows. The experimental protocol along with the 
connectivity analysis is described in Methodology sec-
tion. textcolorblueNext, connectivity results and their 
statistical analysis are presented in the Results sec-
tion. Finally, in the last section a brief discussion and 
the main conclusions of this work are presented.

METHODOLOGY
Experimental Control

 A set of locomotion tasks were performed with three 
healthy research subjects, that did not present neuro-
motor pathologies in their lower limbs. All partici-
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pants gave their consent before the experiment. The 
experiment consisted in a controlled walk on a tread-
mill (XTERRA® trail racer 3.0) at two different veloci-
ties. The treadmill is set at velocity 1 (V1) and the sub-
ject start to walk; at this velocity (3 mph) the subjects 
should feel comfortable. After a minute in V1 the tread-
mill velocity is changed to V2 (5 mph). The transition 
time (T1) where an acceleration occurs is the time 
interval between V1 and V2. After a minute in V2 the 
treadmill velocity changes back to V1. The transition 
time (T2) where a deceleration occurs is the time 
between V2 and V1. Finally, the subject remains walk-
ing in V1 for a minute. After that, the treadmill is 
stopped and the EEG acquisition is turned off after 15 
second in idle state. This procedure was repeated ten 
times for each subject under examination, considering 
comfortable resting periods between trials.

The acquisition of the EEG signals was carried out by 
the B-Alert® X10 from Advanced Brain Monitoring, 
Inc. The system has nine electrodes according to the 
international 10-20 system (Fz, F3, F4, Cz, C3, C4, POz, 
P3 and P4), and its sampling frequency is 256 Hz. The 
signal pre-processing (low and high frequencies noise 
filtering, and artifacts) was carried out by the inner 
filters of the acquisition system. Figure 1 shows the 
electrode distribution of the EEG equipment, accord-
ing to the International 10-20 electrode placement 
system (left), and the research subject wearing the 
equipment (right). In order to study the neural connec-
tivity, the spectral content of the EEG recordings at 

each electrode are analyzed. According to literature, 
changes in the α (8-13 Hz) and β (13-30 Hz) bands of 
neural activity have been observed during motion 
tasks [27]. Both bands were filtered using 5-order 
Chebyshev band-pass filters that were implemented in 
Matlab®.

Coherence is a frequency function that measures the 
statistical interrelation of two signals through several 
coefficients in the frequency domain. Coherence coef-
ficients are normalized

v

FIGURE 1: The neural activity is recorded with the B-Alert® 
X10 from Advanced Brain Monitoring, Inc. The electrode 

distribution is according to the International Standard 
10-20 system.

between 0 and 1 [26,28]. In order to determine con-
nectivity between electrodes the spectral coherence 
was calculated in frequency domain ω, defined by:

where SXX and SY Y define the auto-spectra densities of the X and Y time series, SXY defines the cross-spectrum 
density of both signals.
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The result of Equation (1) is a set of coherence values in a frequency interval. When the coherence between elec-
trodes is calculated, it is possible to group such sets in a symmetric matrix of dimension n×n, where n is the num-
ber of electrodes. In this case, the average coherence value is obtained among the range of the Nyquist frequency 
(fs/2), where fs is the sample frequency:

In this manner, a symmetric matrix C of dimension n × n is obtained, where C coefficients determine the elec-
trodes’s interrelations. However, from C the most important is know how relevant is the relation of each electrode 
respect to others. This is obtained by the average of the columns of C, i.e., c where their elements are given by:

 

where ci is a weighted vector that determines the relative importance of the electrode in the interconnection, thus 
it represents the average connectivity degree between electrodes and cij are the elements of C.

In order to analyze the statistical data of the connectivity, an intra-subject one-way ANOVA was carried out by 
Minitab R 17. The analysis was organized as follows: the connectivity coefficient of the n electrodes per subject, 
three velocities (V1, V2 and V1) and two transition (T1 and T2 ) stages that were repeated 10 times by each subject. 
The null hypothesis considers that the five stages means are equal, while in the alternative hypothesis considers 
that at least one mean is different from the others. The significance level are set at α = 0.05. The same assumptions 
made for meas are considered to analyze the variance of variables among the trials.

Graphs
The coherence is analyzed in pairs of electrodes, this is, the coherence value represents the connection weight 

between them. Therefore, the matrix C can be represented by a connectivity graph. According to the Graph Theory, 
a graph G is an ordered triad (V, E, Ψ) which consist of a not empty set V of vertices, an E set of edges, and an inci-
dence function Ψ : E −→ V . For each edge the following condition holds: Ψ associates the edge e to a pair of vertices 
of V , Ψ(e) = u, v [29]. In this work the adjacent matrix of a graph G with a set of vertices V (electrodes) is the square 
matrix C = C(G) of dimension n × n. Each element cij of this matrix ranges in [0.5, 1] if vi, vj belongs to E, elsewhere 
zero. Matrix C is symmetric with the null diagonal. The grade of vertex vi is d(vi), and it is defined as the number 
of cij ≥ 0,5 in each row (or column).
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FIGURE 2: Frequency spectrum of a neural signal. The α (8-13 Hz) and β (13-30 Hz) bands provides information 
about the neural activity during motion activities [27].

The one-way ANOVA results (F and p values) for the three research subjects are the following: Subject 1 (F = 11.31, 
p ≈ 0.000), Subject 2 (F = 9.84, p ≈ 0.000) and Subject 3 (F = 16.47, p ≈ 0.000). This implies that significant differ-
ences (inside the 95 % Confidence Interval) were found among the means of velocity (V1, V2 and V1) and transition 
stages (T1 and T2) at each subject. The statistical parameters of the coherence in α-band are summarized in Table 1, 
whereas Table 2 shows the statistical parameters of coherence in β-band. In both tables, the number of samples is 
defined as the average connectivity degree computed from data of α and β bands for each motion task.
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whereas Table 2 shows the statistical parameters of coherence in β-band. In both tables, the
number of samples is defined as the average connectivity degree computed from data of α and
β bands for each motion task.

Motion tasks Number of samples Mean Standard deviation 95 %CI
Subject 1 V1 90 3.8438 0.8514 (3.6721, 4.0154)

T1 90 4.2785 0.7974 (4.1068, 4.4501)
V2 90 3.7690 0.8827 (3.5973, 3.9406)
T2 90 4.4033 0.7636 (4.2317, 4.5750)
V1 90 3.8267 0.8426 (3.6550, 3.9983)

Subject 2 V1 90 4.4834 0.6418 (4.3463, 4.6204)
T1 90 4.0492 0.7346 (3.9121, 4.1862)
V2 90 4.5728 0.6377 (4.4358, 4.7098)
T2 90 4.1694 0.6308 (4.0324, 4.3065)
V1 90 4.3952 0.6572 (4.2582, 4.5323)

Subject 3 V1 90 4.2568 0.7842 (4.0902, 4.4235)
T1 90 4.4280 0.7987 (4.2614, 4.5946)
V2 90 3.5807 0.8662 (3.4141, 3.7473)
T2 90 3.8268 0.7687 (3.6602, 3.9934)
V1 90 4.1831 0.7998 (4.0164, 4.3497)

Table 1: Results from statistical analysis of c in α-band: mean, standard deviation and confidence
interval intra-subjects (CI).

Additional to the results presented in Tables 1 and 2, Figure 3, 4 and 5 show the average
and standard deviation of the filtered signals in the α-band (A) and β-band (B) for each of the
three research subjects. In these figures, the dark-blue boxes include the means and variance of
the average connectivity degree of each of the nine electrodes ci (horizontal axes) in each motion
task described in the experimental protocol. More precisely, the first light-blue box represents
velocity 1 (V1), the second light-blue box is velocity 2 (V2), whereas the third light-blue box is
the V1 again. The transition between V1 and V2 is the first white box (T1) and the transition
between V2 and V1 is the second white box (T2).

Electrodes connectivity

A graph was construct in order to observe the connectivity dynamics between electrodes,
during the motion tasks (both, velocities and transitions). Based on the statistical analysis of
the intra-subject result, an average graph at each of the five motion tasks (V1, T1, V2, T2 V1),
considering the three research subject and the ten performed trials. Figure 6 shows the topological
structure of such graphs considering α-band of the EEG signal of each electrode. On the Figure
7 the graphs of β-band are shown.

DISCUSSION

As it was presented in Figure 3.A, Figure 4.A, Figure 5.A and Tables 1 and 2, the means of
the motion tasks differ among them significantly; most precisely, means of velocity stages differ
from means of transition stages while means of the same-kind stage (velocity/transition) do not
differ in Subject 1 and 2, i.e. means are very close. A particular behavior is presented in Subject

TABLE 1: Results from statistical analysis of c in α-band: mean, standard deviation and confidence 
interval intra-subjects (CI).

Additional to the results presented in Tables 1 and 2, Figure 3, 4 and 5 show the average and standard deviation 
of the filtered signals in the α-band (A) and β-band (B) for each of the three research subjects. In these figures, the 
dark-blue boxes include the means and variance of the average connectivity degree of each of the nine electrodes 
ci (horizontal axes) in each motion task described in the experimental protocol. More precisely, the first light-blue 
box represents velocity 1 (V1), the second light-blue box is velocity 2 (V2), whereas the third light-blue box is the V1 
again. The transition between V1 and V2 is the first white box (T1) and the transition between V2 and V1 is the second 
white box (T2).
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Electrodes connectivity
A graph was construct in order to observe the connectivity dynamics between electrodes, during the motion 

tasks (both, velocities and transitions). Based on the statistical analysis of the intra-subject result, an average 
graph at each of the five motion tasks (V1, T1, V2, T2 V1), considering the three research subject and the ten per-
formed trials. Figure 6 shows the topological structure of such graphs considering α-band of the EEG signal of each 
electrode. On the Figure 7 the graphs of β-band are shown.

DISCUSSION
As it was presented in Figure 3.A, Figure 4.A, Figure 5.A and Tables 1 and 2, the means of the motion tasks differ 

among them significantly; most precisely, means of velocity stages differ from means of transition stages while 
means of the same-kind stage (velocity/transition) do not differ in Subject 1 and 2, i.e. means are very close. A 
particular behavior is presented in Subject

 

G. Quiroz et al. Coherence analysis of EEG in locomotion using graphs 7

Motion tasks Number of samples Mean Standard deviation 95 %CI
Subject 1 V1 90 4.7361 0.7839 (4.5777, 4.8945)

T1 90 4.9975 0.7760 (4.8391, 5.1559)
V2 90 4.7691 0.8005 (4.6107, 4.9275)
T2 90 5.1683 0.6629 (5.0099, 5.3267)
V1 90 4.6481 0.7913 (4.4897, 4.8065)

Subject 2 V1 90 4.1777 0.7842 (4.0076, 4.3479)
T1 90 4.0126 0.8694 (3.8424, 4.1827)
V2 90 4.4906 0.8042 (4.3205, 4.6608)
T2 90 4.1439 0.8003 (3.9737, 4.3140)
V1 90 4.0700 0.8455 (3.8999, 4.2402)

Subject 3 V1 90 4.4796 0.8673 (4.3001, 4.6590)
T1 90 4.4056 0.8576 (4.2261, 4.5850)
V2 90 4.3494 0.9073 (4.1700, 4.5289)
T2 90 4.3984 0.8435 (4.2189, 4.5778)
V1 90 4.5531 0.8542 (4.3737, 4.7326)

Table 2: Results from statistical analysis of c in β-band: mean, standard deviation and confidence
interval intra-subjects (CI).

3, where also significant differences between means of the same stage are present i.e. V2 mean
differs from both inicial V1 and final V1 means while T1 mean differs from T2 mean.

In general, an increment in the neural activity is reported (by the suppression of activity in
α and β bands) over the cortical sensorimotor areas, which correspond to the lower limb control
areas during locomotion, in comparison to imagery locomotion. On the other hand, there is a
suppression of the α and β bands in the premotor and sensorimotor areas during locomotion,
contrary to resting state such as it was previously reported in [18,20].

From the statistics of the coherence analysis, it can be shown that the α-band (Figure 3.A,
Figure 4.A and Figure 5.A) provides more information than the β-band (Figure 3.B, Figure 4.B
and Figure 5.B) regarding connectivity dynamics in each of the motion tasks. Figures 3-5 show
that the electrode Cz is the most reliable in all the activities, preserving its behavior between
the three research subjects. To identify a reliable electrode gives the possibility of use its data
as command control in BMIs applications. Regarding the spatial analysis of the connectivity,
Figures 6 and 7 show that during the transitions the connectivity between electrodes tends
to increase, while the connectivity during speed periods decreases. Moreover, the topology of
V1 is preserved independently disregarding which transition occurred. Although during V2 the
connection pattern holds, the connectivity grade increases in both bands (see Figure 6 and 7).
These results are in concordance with the literature regarding EEG features during locomotion,
but the graph dynamics shows the neural connectivity changes.

CONCLUSION

The use of the neural information from EEG signals is useful in BMIs application to interpret
user motion intention. In this work it is shown that, along the frequency features of the signal, it
is possible to find spatial patterns to classify locomotion tasks. In this manner, the connectivity
analysis alongside graphs provides reliable information about the spatio-temporal characteristics
in the neural activity, where dynamical evolution of the pattern during locomotions tasks is shown
(see Figure 6 and 7). For BMIs applications it is important to find patterns that hold between

TABLE 2: Results from statistical analysis of c in β-band: mean, standard deviation and confidence 
interval intra-subjects (CI).

3, where also significant differences between means of the same stage are present i.e. V2 mean differs from both 
inicial V1 and final V1 means while T1 mean differs from T2 mean.

In general, an increment in the neural activity is reported (by the suppression of activity in α and β bands) over 
the cortical sensorimotor areas, which correspond to the lower limb control areas during locomotion, in compari-
son to imagery locomotion. On the other hand, there is a suppression of the α and β bands in the premotor and 
sensorimotor areas during locomotion, contrary to resting state such as it was previously reported in [18,20].

From the statistics of the coherence analysis, it can be shown that the α-band (Figure 3.A, Figure 4.A and Figure 
5.A) provides more information than the β-band (Figure 3.B, Figure 4.B and Figure 5.B) regarding connectivity 
dynamics in each of the motion tasks. Figures 3-5 show that the electrode Cz is the most reliable in all the activities, 
preserving its behavior between the three research subjects. To identify a reliable electrode gives the possibility of 
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use its data as command control in BMIs applications. Regarding the spatial analysis of the connectivity, Figures 
6 and 7 show that during the transitions the connectivity between electrodes tends to increase, while the connec-
tivity during speed periods decreases. Moreover, the topology of V1 is preserved independently disregarding which 
transition occurred. Although during V2 the connection pattern holds, the connectivity grade increases in both 
bands (see Figure 6 and 7). These results are in concordance with the literature regarding EEG features during 
locomotion, but the graph dynamics shows the neural connectivity changes.

CONCLUSION
The use of the neural information from EEG signals is useful in BMIs application to interpret user motion inten-

tion. In this work it is shown that, along the frequency features of the signal, it is possible to find spatial patterns 
to classify locomotion tasks. In this manner, the connectivity analysis alongside graphs provides reliable informa-
tion about the spatio-temporal characteristics in the neural activity, where dynamical evolution of the pattern 
during locomotions tasks is shown (see Figure 6 and 7). For BMIs applications it is important to find patterns that 
hold between

FIGURE 3: Analysis of data of Subject 1. Mean and standard deviation of ci during the motion tasks, that is, velocities V1, V2 
(dark-blue boxes) and transitions T1 and T2 (light-blue boxes). The analysis includes α (A) and β (B) bands.
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subjects, as it was shown in this work. The role of the subject differences, as well as to include more variables in 
the experimental protocol such as treadmill angle and more walking speeds would be of interest in future works.

In general we have observed that differences among motion tasks can be detected from connectivity coeffcients 
such as coherence. The connectivity patterns in V1, V2, T1 and T2 are spatial characteristics of the neural activities 
for these well-defined locomotion tasks, and they can be quantified and validated by the statistical analysis of the 
average of the connectivity degree (c) along the full-locomotion trail, which includes the five motions tasks. Thus, 
the results also provide the time-evolution of the characterized spatial patterns. The proposed approach provides 
a quantitative analysis to find differences among motion tasks in order to show that is possible to use them as 
inputs of a BMI system.

FIGURE 4: Analysis of data of Subject 2. mean and standard deviation of ci during the motion tasks, that is, velocities V1, V2 
(dark-blue boxes) and transitions T1 and T2 (light-blue boxes). The analysis includes α (A) and β (B) bands.
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