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ABSTRACT

Reconstructing the surface from a set of unstructured points to build
a 3D model is a problem that arises in many scientific and industrial
fields as new 3D scanning technology is able to produce large
databases of full 3D information. 3D surface reconstruction is also
important after segmenting sets of 2D images to visualise the 3D
surface represented by the segmentation. In this paper we propose
an algorithmic methodology that obtains a series of segmentations
of human head tomographies, produces a set of unstructured points
in the 3D space, and then automatically produces a surface from the
set of unstructured 3D points about which we have no topological
knowledge. The methodology can be divided in two stages. First,
tomographic images are segmented with a Neural Network algorithm
based on Kohonen�s1,2 Self-Organising Maps (SOM). The output
neurones that have adapted to the image, are a series of 3D points
that will be fed to the second stage. Next, our method uses a spatial
decomposition and surface tracking algorithm to produce a rough
approximation S� of the unknown manifold S. The produced surface
S� serves as initialisation for a dynamic mesh model that yields the
details of S to improve the quality of the reconstruction.

Key words:
Neural networks, Image segmentation, Self-Organising maps, 3D
Reconstruction, Dynamic meshes.

RESUMEN

La reconstrucción de superficies a partir de conjuntos de puntos no
estructurados con el fin de crear modelos tridimensionales es un
problema frecuente en muchas disciplinas científicas e industriales.
La presencia creciente de escaners 3D que son capaces de producir
grandes bases de datos de información parcial de objetos requiere
de algoritmos robustos para completar la información faltante sobre
los objetos y crear modelos completos de la información 3D. La
reconstrucción de superficies es también importante después de la
segmentación de imágenes, de modo que sea posible visualizar la
superficie 3D representada por la segmentación. En este artículo
proponemos una metodología algorítmica que obtiene segmen-
taciones de tomografías de la cabeza humana, produce conjuntos
no estructurados de puntos a partir de las segmentaciones, y
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INTRODUCTION

We propose a solution to the following problem:
Given a set Q of images of human head tomographies,

segment a certain structure of the images, and from the
output obtain a series Q� of segmented images that can
be interpreted as a set P of unstructured 3D points that
samples an unknown arbitrary surface S, reconstruct a
surface S� that correctly approximates S.

The first stage of the algorithm consists of structure
segmentation, an important and complex problem in
image processing.8,9,10 Segmentation, as defined by
Kapur,8 is �a labelling problem in which the goal is to
assign to each vowel in an input gray-level image, a
unique label that represents an anatomical structure.�
Therefore, the ultimate objective would be to properly
identify structures such as a tumour, the brain tissue or
the skull.

The segmentation of an image can be carried out
by different techniques that are based mostly on the
discontinuity and similarity of its grey levels. Gonzalez
and Woods11 propose several edge detection and
segmentation techniques and Felzenszwalb and
Huttenlocher12 propose yet different methods. In this
paper, a neural network approach based on
Kohonen�s Self-Organising Maps is used to segment
medical images.

The Self-Organising Maps1,2 consist of a series of
nodes or �neurones� that will act upon a series of inputs.
Each neurone is densely interconnected, receives a
primary input and a great number of lateral
interconnections from the outputs of other neurones.
The lateral coupling of the neurones is thought of as a
function of the distance in two ways: excitatory and
inhibitory. The excitatory is a short-range area up to a

certain radius, and the inhibitory area surrounds the
excitatory area up to a bigger radius. Outside the
inhibitory range, a weaker, and much bigger excitatory
zone exists. A cluster or bubble around one particular
node of the network is formed because of the lateral
coupling around a given cell. The primary input deter-
mines a �winner� node, which will have a certain clus-
ter, and then, following the input, the winner node with
its surrounding cluster or neighbourhood will adapt to
the input. The process continues for a number of
interactions until a certain degree of adaptation is
reached. When the input is an image, certain features
are extracted by the final adaptation of the neurones.
The neurones will then form a set P of unstructured 3D
points that will be the input for the reconstruction stage.

In the last years, a great deal of research has been
dedicated to solving the general case of 3D
reconstruction where the only information available is
the position of the points in P. Two categories of
algorithm are efficient to deal with such reconstruction
problems: 1) methods that reconstruct the surface by
exploring the set P and imposing a structure on it (local
techniques) such as modified marching cubes,15

particle systems,16 and 2) methods using deformable
or physically based models to approximate the surface
of the set P such as geometrically deformable models,17

and adaptive meshes.18

Local techniques can reconstruct arbitrarily complex
shapes to a good degree of accuracy. A drawback of
these techniques is that they require additional
information on the set of 3D points other than the
position (normal, neighbourhood information etc.), for
which some sort of pre-processing is usually required.

Deformable models such as the 3D adaptive meshes
in18,20 require no additional information on P to reconstruct

después produce automáticamente una superficie a partir del
conjunto de puntos sin importar la topología de la superficie que
se esté reconstruyendo. La metodología se puede dividir en dos
etapas. Primero, las imágenes tomográficas son segmentadas
usando un algoritmo de redes neuronales basado en los mapas
autoorganizables de Kohonen.1,2 El resultado de este algoritmo son
neuronas que se han adaptado a la imagen y que constituyen el
conjunto de puntos 3D que se utilizará en la segunda etapa. La
segunda etapa utiliza un algoritmo de descomposición espacial y
seguimiento de superficies para producir una aproximación burda
S´ de la superficie desconocida S. La superficie S´ sirve de
inicialización para un modelo de malla dinámica que produce los
detalles de S mejorando notablemente la calidad de la recons-
trucción.

Palabras clave:
Redes neuronales, Segmentación de imágenes, Mapas
autoorganizables, Reconstrucción 3D, Mallas dinámicas.
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the underlying surface, but the type of surfaces they can
reconstruct is usually limited to being homomorphic to
the initial mesh: they start with a generic mesh (usually a
sphere or cylinder) which is then deformed to
approximate the shape of S. In a post-processing stage
some deformable models incorporate holes and
borders, or change the topology of the initial mesh,22,21

but this post-processing requires the estimation of
additional information on P (measures of curvature or
distance maps from P to the deformable model). In
addition, global models might develop auto-
intersections when reconstructing surfaces that fold over
themselves or have a complex topology, and they might
fail to reconstruct the correct underlying surface when
such a surface is very far away from the initial model.

The reconstruction algorithm in this paper combines
the two categories of surface reconstruction methods
mentioned before. We propose a simplified and robust
reconstruction method that eliminates the hypotheses
of additional information on P (in local techniques) and
of homomorphism to the initial global mesh (in defor-
mable models). We use a local technique to recu-
perate the initial topology of P and build a good initial
model for a deformable adaptive mesh. The resulting
algorithm is able to reconstruct arbitrary surfaces in a
non-supervised fashion without the need to estimate
additional information about P.

To solve the reconstruction problem we place
ourselves in the situation where the set P satisfies the
following density constraint: for any point s of S, its
nearest point x Î  P according to the point to point
Euclidean distance in R3, is also its nearest point x Î  P
according to the geodesic distance r  on the surface
S. We will also assume that the maximal distance
between any two nearest points of P is smaller than
any hole, discontinuity or bending of S.

The remaining of the paper is organised as follows:
Section 2 describes the implementation of the neural
network interface for segmentation; Section 3 presents
some segmentation results; Section 4 introduces the
initial reconstruction model; Section 5 presents the
Dynamic Model and Section 6 an overview of dynamic
equations. Section 7 shows the reconstruction results
and finally, conclusions are summarised in Section 8.

METHODOLOGY

Implementation of segmentation

The Self-Organising algorithm proposed by Kohonen
follows two basic equations: matching and finding the
winner node determined by the minimum Euclidean
distance to the input1 and the update of the position
of neurones inside the cluster.2

(1)

(2)

Where, for time t: x is the input
mi is any node,
mc is the winner,
a is the gain sequence, and

Nc is the neighbourhood of the winner.

It should be noted that only the excitatory region
would be considered for the update with satisfactory
results. The decrease rate of the neighbourhood and
the initial value of the parameters are studied in.14

The updating process is a variation of the location
of the node, proportional to the Euclidean distance
from the node to the input multiplied by the gain
sequence if the node lies inside of the neighbourhood.
If it is not inside the neighbourhood, its position remains
unaltered.

The definition of the neighbourhood presents two
different cases, one if the network of nodes accepts
that the neighbourhood is limited by the edges of the
network itself, and the other in case that the
neighbourhood is not limited by the edges of the
network. If the network consists of n*1 neurones, the
first case results in a linear network and the second in
an annular network. Figure 1 shows both cases for 10
neurones and a neighbourhood of size 2 around a
winner node and the output to a given input. The
neighbourhood for a linear network consists only of four
neurones on one side of the network, contrary to the

Nc
mc x

Ncmc x

Nc(a) (b)

annular network that includes a fifth neurone on the
other side. If the network is a two-dimensional array of
neurones, the network itself generally limits the
neighbourhood.

Figure 1. Differences in update regions: (a) Linear Network,
(b) Annular Network.
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Figure 2 presents the results for neurones organised
as an annular network, given as input a triangular
region. The network consists of 50 neurones and the
results were obtained after 10,000 interactions. It
should be noted that no initial conditions for the
network are required. In fact, the neurones start at
random positions.

The input signal can be defined either as a test set
(a geometrical region like a square, triangle, and cube),
or it can be read from an image. The geometrical
regions are widely used to test algorithms.

When an image is used as input, it is first transfor-
med into an i*j*l matrix, where i*j is the dimension in
pixels of the image and l, the number of layers of the
image. For colour images l = 3 and for a grey scale
images l = 1. For each (i, j, l) position there exists a ki,j,l

value in the range 0-255 depending on the intensity
of the colour or grey level. Let Rijl be the region of
existence of k.

Figure 3 shows a grey level Magnetic Resonance
(MR) image of a transaxial slice of a human head

transformed into a matrix. The i and j axis follow the
original image, and the value of the k-axis is proportional
to the intensity, darkness/brightness, of the pixel in the
x, y position of the original image. The bones from the
skull appear with a higher k value while the brain and
other elements have different lower values.

This format of the image allows several trans-
formations. Since the k value represents the grey level,
selecting a certain range of k can segment the image.
With two different thresholds one lower, LT, and one
higher, HT, the values of k can be transformed accor-
ding to:
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As an example, Figure 4 presents a segmentation
with LT = 200 and HT = 255, of the higher k values which
correspond to bone of the skull.

Figure 2. Output for triangular input and an Annular
Network.

j

k

i

Figure 3. Matrix 3D display of a brain slice image.

Once the image has been transformed into a matrix,
and segmented if needed by grey level selection, the
algorithm for the SOM will have as input region the non-
zero values of the matrix.

]  0[:   ,,,,,, ljiljiijllji xkRk ∃⇔≠∈∃                     (4)

The x value is used for the Self-Organising algorithm
that runs until a certain parameter of is reached. Then,
the final network is compared with the original image
to identify the segmented regions. The process is shown
graphically in Figure 5.

Figure 4. Segmentation of human head MR.



77Reyes ACC y col. A combined algorithm for image segmentation using neural networks and 3D surface reconstruction

edigraphic.com

RESULTS

Segmentation results

The Self-Organising Maps were run with different
images as input signals. Figure 6 shows the result of an
80-neurone network after 10,000 interactions run over
the MR slice previously segmented with grey levels. In
this case a network with ring topology, instead of a grid
or linear network can provide the best results in order
to extract the contour and �thin� the bone as well as
to give continuity to the shape of the skull. In Figure 6
(a) the black diamonds show the position of the
neurones connected with virtual lines. In Figure 6 (b)
only the neurones are presented with circles, note how
the region of the nose is completed with a virtual line
between neurones and also the occipital region. A
slight discontinuity can be noted between the first and
the last neurones in the parietal region on the left side
of the network.

The previous procedure is repeated for the collection
of images representing the contiguous slices in a MR
study of a human head. In the end, an n-neurone
network will represent points over the surface of the
human skull. The position of the neurones is interpreted
as a 3D position that will be used to reconstruct the
surface of the skull. Figure 7 shows the collection of
points from 54 MR slices, each with 58 output neurones.

Construction of Initial reconstruction model

The surface reconstruction algorithm starts with the
construction of an initial surface model. This stage
consists of imposing a first structure on the set P in order
to build a rough model S� of the same topology of S.

The rough model S� will then be used to initialise an
adaptive mesh that will improve the quality of the
reconstruction. The initialisation process takes as input
the set P of points {x1, x2,�, xn} Î R3, and the maximum
distance between two adjacent neurones r . It performs
a partitioning of the space where P is contained into
cubes with edges of size e equal to r . If models of lower
detail are sufficient a dilation factor can also be
specified to increase the size e of the spatial cubes.
Also, the partitioning of the space need not be regular
in the three dimensions. The algorithm flags the cubes
that are occupied by one or more points of P, and for
each cube we register the information about what
points are located inside it. The spatial partitioning

Figure 6. 80-neurone network adapted over figure 4. (a)
Neurone positions (black) and skull (grey) (b) Neurones
only, arrow points discontinuity between first and last
neurones.

(a)

(b)
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Figure 5. Segmentation algorithm.
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scheme automatically imposes an organisation on the
data.

We build a cuberille from the set of occupied cu-
bes, that is, a surface composed of all the exterior fa-
ces that are not shared by any two occupied cubes.
The cuberille defines a rough surface S� approximating
S. To build the cuberille we use the surface extraction
algorithm by Gordon and Udupa23 which tracks a clo-
sed surface from a set of connected cubes. Figure 8 a)
shows the cuberille that was built upon the set P of fi-
gure 7 and that defines the surface S�.

We systematically triangulate the set of cuberille
faces by splitting each square by one of its diagonals.
We also integrate the information about the created
triangles and their adjacencies into a triangulated mesh
structure. The stepped surface S� of the triangulated
cuberille can be directly used as an initialisation model
for the adaptive mesh algorithm. However, to speed
up the convergence of the adaptive mesh, we smooth
the surface S� using a simple low pass filter. The low pass
filter assigns to each triangle vertex a new position that
is a weighted average of its old position and the position
of its neighbours. Figure 8 b) shows the systematic
triangulation constructed on the rough surface S�. Fi-
gure 8 c) shows the smoothed surface S� obtained after
applying the low pass filter to the initial triangulation.

The initial model S� will incorporate the correct
topology of S if the following conditions are verified: i)
the data set P satisfies the density constraint, that is, r
(the maximum distance between any two nearest
neurones) is smaller than the characteristics of the
surface S, and ii) the size e of the spatial cubes is equal
to r . With these two conditions it can be verified that
two adjacent sample points on S belong either to the
same cube, or to two adjacent cubes (according to
the 26-connexity).

Dynamic model

This stage of the reconstruction algorithm consists in
deforming the initial model S� to better conform to the
surface S and to recover the fine details not
incorporated in the initialisation procedure. To deform

Figure 7. Collection of 3D points of 54 MR slices, each
segmented with 58 neurones: the set P.

Figure 8. a) The rough surface S� (cuberille) built open the
set P in Figure 7, b) The systematic triangulation constructed
on S�, c) The smoothed surface S� after applying the low
pass filter to the triangulation.

(b)

(a)

(c)
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S� we will consider it as an adaptive mesh. We use the
mass-spring adaptive mesh model described in.18,20

An adaptive mesh is a polyhedral structure and in
our case a triangulated mesh. Adaptive meshes are
flexible models because of their capacity to deform
under the influence of attracting forces coming from
the 3D points in P. However, adaptive meshes alone
are not effective to reconstruct complex shapes
because of the difficulty of establishing a correct
correspondence between the data points in P and the
adaptive mesh. We overcome this limitation by
initialising our adaptive mesh with the mesh S� that
already has the topology of S. Each triangle vertex in S�
is a nodal mass, and each triangle side an adjustable
spring. Each nodal mass is attached to its closest point
in P by an imaginary spring. From the space partitioning
scheme we know the data points inside every cube
and the triangles that were originated from it, thus we
can establish a fast, local correspondence between S�
and P as follows: for every vertex on S�, we search inside
the cube from which it originated, and inside its 26-
neighboring cubes, the point in P that is closest to the
considered vertex. This correspondence is recalculated
at every interaction by searching inside the cube
containing the point of P that was last assigned to a
given vertex and inside its 26-neighboring cubes. By
controlling the interaction time step dt  so that the
motion of a vertex remains smaller that e, we keep a
correct correspondence as the vertices of S� move in
time through the spatial cubes to adapt to S.

Dynamic equations

In an adaptive mesh, the nodal masses are subject to
structural forces coming from the springs that
interconnect them, and to external forces coming from
the data points in P. Each nodal mass has a dynamic
equation of the form:

                                                                                    (5)

where xi is the 3D position [xi, yi, zi]
t of node i at time

t, and µi and gi are the mass and damping values
associated to node i. k j is the stiffness coefficient of the
spring connecting node i to neighbouring node j, and
kd is the stiffness coefficient of the spring connecting
node i to its closest point in P xd. We use springs of natu-
ral length equal to zero.

The dynamic equations of the nodal masses can be
rewritten as:

(6)

and in matrix form:

 Mx + Gx + Kx = Fext                                 (7)

where M is the mass matrix, G the damping matrix, K
the stiffness matrix, and Fext the external force vector.
M and G are diagonal matrices; K contains off-diago-
nal elements and therefore the system is said to have
stiffness coupling. An adaptive mesh can also be seen
as a coupled oscillator with N-degrees of freedom (N =
number of nodal masses in the system). We use a direct
step-by-step explicit Euler integration scheme to solve
the system of coupled equations.

An adaptive mesh will exhibit different types of
behaviour (oscillatory, exponential) depending on the
values of its dynamic parameters M, G, and K. To be
able to use adaptive meshes efficiently for surface
reconstruction, we need to perform an analysis of their
dynamic characteristics in order to ensure a stable, non-
oscillatory behaviour of the nodal masses and optimise
the convergence time. For a detailed analysis on the
determination of the dynamic parameters see.24

Reconstruction results

Figure 9 shows the results of the final reconstruction.
We modelled the adaptive mesh using a critically
damped coefficient value. Convergence of the mesh
(i.e. the speed and the acceleration of the nodes falling
below a given threshold) take in practice from 20 to 30
interactions.

Figure 10 show the final reconstruction as a shaded
image. The presence of holes is noticeable in zones of
the skull where neurones are very far away from each
other.
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CONCLUSIONS

A Self-Organising Map network was programmed to
receive images, as input signal regions. For this work,
medical images were used and different segmen-
tations were obtained with annular and grid networks
without the requirement of initial conditions. These types
of results allow us to extract important features like the
skull from a human head MR study and to represent its
position through i, j coordinate points. The limitations of
the algorithm depend now on the computational
complexity of the images and the amount of neurones
for the networks. Also, different kinds of networks can
be programmed to improve segmentation results (i.e.
an hexagonal grid).

Our current research focuses in applying the neural
network algorithm to different types of images and in
trying other segmentation problems with more complex
shapes such as the ventricles or white matter in a human
brain MR.

The segmentation results were input to an algorithm
for reconstructing in two stages a surface S from a set P
of dense but unstructured 3D points. First, we recover
the topology of the underlying object using a technique
of exhaustive spatial decomposition and a surface
tracking algorithm. This simple local technique allows
us to build rough triangulations of arbitrary surfaces. In
the second part of the algorithm we use the rough
triangulation to initialise an adaptive mesh model. We
dynamically deform the adaptive mesh to adapt it to
the surface of the set P. By using the spatial partitioning

information about the position of the 3D points relative
to the deformable mesh, we can establish a fast
dynamic correspondence. Because the adaptive mesh
is initialised very near the final surface, and because
we optimise the dynamic parameters of the system,
only a small number of interactions are needed for
convergence.

By using only the position information of the dense
set of 3D points in P we are able to obtain accurate
reconstruction that could not have been obtained by
the use of local methods or deformable models alone,
since both methods need to estimate additional
information on P to perform successfully.

The two step reconstruction algorithm is fully
automatic does not require additional pre-processing
or post-processing of the data, and is capable of
reconstructing arbitrary forms. Because of its flexibility
to reconstruct different topologies, our method is a
good tool for unsupervised reconstruction after
segmentation of a set of images or for visualising the
surface of acquired 3D points.
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