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Power analysis of the basilar membrane in the cochlea
by mechanical resonance

Análisis de potencia de la membrana basilar en la cóclea por resonancia mecánica

M. Jiménez-Hernández
Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Ciudad de México, México.

ABSTRACT
This paper presents the power analysis to the mechanical model of the basilar membrane in the cochlea as a system 
of forced damped harmonic oscillators without lateral coupling proposed by Lesser and Berkeley. The Lagrange’s 
equation for dissipative mechanical systems and the energy method are used to obtain the general equation of 
the system. Next a solution by complex exponential is proposed using the resonance analysis considering only 
excitations of pure tones to obtain the equation of displacement, and with its derived the equation of velocity. The 
power in the system is the multiplication between the equations of the velocity and the excitation force. Finally the 
equation of the average power in the system is obtained. This new solution has the advantage of determining the 
relationship between the excitation frequency of the system and the position along the basilar membrane where 
the average power is maximum. This implies that the distance where there is maximum transfer of energy between 
the wave propagating in the perilymph and the mechanical displacement of the basilar membrane on the hair cells 
in the organ of Corti is known. The power analysis is successfully compared with the two-dimensional model of 
the cochlea developed by Neely using finite differences and with the experimental results of Békésy. In both ex-
periments are used the same mechanical parameters of the basilar membrane and the same set of frequencies of 
evaluation proposed in the original papers in order to compare the different methodologies.
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RESUMEN
En este artículo se presenta el análisis de potencia del modelo mecánico de la membrana basilar en la cóclea como 
un sistema de osciladores armónicos forzados amortiguados sin acoplamiento lateral propuesto por Lesser y Ber-
keley. Se usa la ecuación de Lagrange para sistemas mecánicos disipativos y el método de energías para obtener 
la ecuación general del sistema. A continuación se propone su solución en forma exponencial compleja usando el 
análisis por resonancia considerando únicamente excitaciones de tonos puros obteniendo la ecuación del desplaza-
miento, y a partir de su derivada la ecuación de la velocidad. Posteriormente se determina la ecuación de potencia 
mediante el producto entre las ecuaciones de la velocidad y la fuerza de excitación. Por último se obtiene la ecua-
ción de la potencia promedio en el sistema. Esta nueva solución tiene la ventaja de determinar la relación entre la 
frecuencia de excitación del sistema y la posición a lo largo de la membrana basilar donde la potencia promedio es 
máxima, con lo cual se conoce la distancia donde se genera la máxima transferencia de energía entre la onda que se 
propaga en la perilinfa y el desplazamiento mecánico de la membrana basilar sobre los cilios en el órgano de Corti. 
El análisis de potencia se compara satisfactoriamente con el modelo en dos dimensiones por diferencias finitas de la 
cóclea desarrollado por Neely y con los resultados experimentales obtenidos por Békésy. En ambos experimentos se 
usan los mismos parámetros mecánicos de la membrana basilar y el mismo conjunto de frecuencias de evaluación 
propuestos en los trabajos originales con el objetivo de comparar las diferentes metodologías.

PALABRAS CLAVE: Cóclea, membrana basilar, resonancia mécanica, potencia.
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INTRODUCTION
This paper presents the power analysis for the two-di-

mensional model of the basilar membrane as a set of 
forced damped harmonic oscillators without lateral cou-
pling proposed by Lesser and Berkeley, the objective is to 
determine the relationship between the excitation fre-
quency and the position along of the basilar membrane 
where the maximum average power occurs. This model 
has the advantage over the previous models of to obtain 
the distance where there is maximum energy transfer 
between the basilar membrane and the organ of Corti, 
which is necessary for the activation of the hair cells.

The two-dimensional models of the mechanical tun-
ing of the basilar membrane in the cochlea have been 
proposed considering the perilymph as an incom-
pressible fluid and the basilar membrane as a forced 
oscillator damped without coupling along the length 
of the membrane. The most representative models 
were developed by Peterson and Bogert[1], Ranke[2], 
Fletcher[3], Zwislocki[4], Lesser and Berkeley[5] and 
Siebert[6], the contribution of these models is to deter-
mine the physical propagation of the wave on the bas-
ilar membrane by short-wave and Long-Wave approxi-
mations. In these models are proposed parameters of 
mass, elasticity and damping that representing the 
mechanical behavior of amplitude and phase in the 
wave on the basilar membrane in the same way that 
the observations reported by Békésy [7].

However these models have disadvantages to repre-
sent the behavior of the membrane for the high fre-
quencies near to the apex and for the low frequencies 
near to the helicotrema. The later models consider the 
basilar membrane as an elastic plate, the viscosity of 
the perilymph and the geometry of the membrane, 
being the most representative developed by Steele [8], 
Inselberg and Chadwick[9], Chadwick, Inselberg and 
Johnson[10], Chadwick[11] and Holmes[12, 13, 14], with 
which were developed the Shallow-Water and Deep-
Water approximations.

Numerical solutions for the two-dimensional models 
of the cochlea have been developed by Lesser and 
Berkeley using Fourier series[5] and by Allen from the 
Green’s function[15]. Later Allen and Shondi consider a 
recursive algorithm to solve the model in the time 
domain[16]. Steele and Taber proposed a solution using 
the finite difference method[17, 18]. Viergever use the 
Laplace equation in three dimensions to model the 
behavior of the basilar membrane[19] and Neely uses 
the finite difference method to discretize the Laplace 
equation[20, 21]. Subsequently Neely made a mathemati-
cal model of the cochlea considering its macrome-
chanics and micromechanics[22], in a later work Neely 
proposed a model for the motility of the outer hair 
cells in the tunning of the basilar membrane[23]. 
Compilations of the two-dimensional models of the 
cochlea have been prepared by Dallos et al.[24], Dallos, 
Popper and Fay[25] Keener and Sneyd[26] and Duifhuis[27]. 
Applications of these models to disorders of hearing 
have been published by Berlin and Bobbin[28, 29].

Certainly of all two-dimensional models that have 
been developed one of the best approaches to the mac-
ro-mechanical response of the cochlea has been devel-
oped by Lesser and Berkeley, which considers the 
variation of dimensions in the basilar membrane along 
of the scale vestibuli and the scala tympani, also mod-
els the opening of the helicotrema and proposes 
mechanical parameters for the impedance of the basi-
lar membrane that provides a similar response to the 
observations of Békésy. The best analytical solution 
for this type of models has been developed by Neely, 
in which the mechanical parameters of admittance for 
the basilar membrane that are proposed improve the 
results of all observations in the experiments obtained 
previously of the mechanical behavior of the basilar 
membrane, being until today one of the best model in 
two-dimensions for the cochlear mechanics. Recently, 
this methodology and their mechanical parameters 
has been employed in several works, Ramamoorthy, 
Deo and Grosh[30] made an electric mechanical model 
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of the cochlea response. Liu and Neely[31] consider the 
nonlinear effects in the mechanoelectrical transduc-
tion of the outer hair cells. Elliot, Lineton and Ni[32] 

studied the fluid coupling in the cochlear mechanics, 
a more comprehensive study of this methodology was 
developed by Ni[33]. Jiménez employment the reso-
nance analysis[34, 35] to solve these types of models. 
Elliot, Ni, Mace and Lineton[36] developed a finite ele-
ment analysis of the passive cochlea. Cormack, Liu, 
Nam and Gracewski[37] model the fluid coupling of the 
behavior between the basilar membrane and the tecto-
rial membrane and Jiménez used the Lagrange’s equa-
tion[38] to determine the coupling between the macro-
mechanics of the cochlea and the micromechanics in 
the organ of Corti.

In the analysis of power proposed first is obtained the 
general equation of the system using the Lagrange’s 
equation for dissipative systems. Next the resonance 
analysis is used to obtain the equation of displacement 
of the system and from its derivative the equation of 
the velocity. The power in the system is the product of 
the equations of the velocity and the excitation force. 
Finally as in this analysis the excitation force is a 
cosine function the average power is considered.

For the evaluation of the power analysis, the value of 
the magnitude of the force is normalized and the same 
set of frequencies reported in the original papers are 
considered, in order to compare the results between 
the different methodologies. In the first experiment 
the mechanical parameters of admittance for the 
two-dimensional model of the cochlea developed by 
Neely are used to compare the power analysis with the 
method of finite differences applied to the Laplace 
equation. In a second experiment are used the values 
of the mechanical parameters of impedance along of 
the basilar membrane developed by Lesser and 
Berkeley to compare the results of the power analysis 
with the experimental measurements of Békésy, 
obtaining satisfactory results in both experiments. 

The advantage of this methodology respect to the last 
developed models of coupling fluid of Elliot et al.[32, 36], 
Ni[33] and Cormack et al.[38] is determining the relation-
ship between the excitation frequency of the system 
and the distance along of the basilar membrane con-
sidering only their mechanical characteristics of mass, 
stiffness and damping. In contrast the other method-
ologies required to determine the position where the 
wave that is propagated in the perilymph has a maxi-
mum value, also the power analysis modeling the 
response of the cochlear mechanics without consider-
ing the mechanical behavior of the organ of Corti, 
which is corroborated by the results obtained in the 
developed experiments.

Two-dimensional model of the cochlea
The cochlea is the element of the inner ear that identi-

fies the frequencies that constitute a sound, it has spiral 
geometry and is divided longitudinally into three com-
partments: the scala vestibuli, the scala tympani and 
the scala media. The scala vestibuli and the scala tym-
pani are filled with a fluid called perilymph and the 
scala media is filled with a fluid of high concentration 
in potassium and low in sodium called endolymph. The 
scala vestibuli and the scala media are separated by the 
Reissner’s membrane and the scala media and the scala 
tympani are separated by the basilar membrane[26]. 

The stapes located at the base of the cochlea transmits 
the vibrations from the middle ear to the scala vestibuli 
through the oval window, the resulting waves are 
propagated in the perilymph along of the scala ves-
tibuli and create complementary waves in the basilar 
membrane and the scala tympani.

At the end of the cochlea or apex there is an opening 
called helicotrema that allows leveling the pressures 
between the two compartments, as the perilymph is an 
incompressible fluid exists a complementary structure 
to the oval window in the scala tympani called the 
round window[39]. 
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The transduction of the sound wave into electrical 
signals occurs in the hair cells which are placed in the 
organ of Corti on the basilar membrane, when the 
waves are propagated in the perilymph the basilar 
membrane generates a force on them causing a change 
in the electrical potential which is transmitted to the 
brain by the auditory nerve[7].

The mechanical characteristics of the cochlea have 
been modeled in two-dimensional by Lesser and 
Berkeley. Their model considers to the perilymph as an 
incompressible fluid with a fixed volume and that only 
can be moved inside due to the excitations transmit-
ted by the oval window into the scala vestibuli. This 
has the advantage of generalizing the behavior of the 
cochlea in two rectangular compartments which rep-
resent to the scala vestibuli and the scala tympani 
separated by the basilar membrane. If the fluid φ is 
irrotational, the density ρ always is constant and the 
pressure p is normalized then is possible to eliminate 
the nonlinear terms when the amplitudes are small, 
obtaining the following two conditions

If two compartments are considered, there are two 
copies of the equations which model the mechanical 
behavior of the cochlea.

Lesser and Berkeley proposed that each point of the 
basilar membrane is modeled as a simple forced 
damped harmonic oscillator with mass m(x), damping 
c(x) and stiffness k(x) that vary along of the length on 

The mechanical parameters of the basilar membrane 
proposed by Lesser and Berkeley are shown in the 
Table 1.

The numerical solution developed by Nelly to the 
model of cochlear mechanics of Lesser and Berkeley 
proposes that the cochlea is a rectangular region of 
length L from the base to the apex and width 2H, this 
is filled with an incompressible fluid similar to the 
perilymph and divided into two symmetrical com-
partments, which are separated by an elastic partition 
of similar characteristics to the basilar membrane. The 
first compartment represents the scale vestibuli and is 
limited to the outside by the stapes, the upper wall and 
the helicotrema, the second represents the scala tym-
pani and is limited to the outside by the round win-
dow, the lower wall and also by the helicotrema. The 
movement of the stapes sets in motion to the peri-
lymph and causes deformation in the basilar mem-
brane, the Figure 1 shows the original two-dimen-
sional model of the cochlea proposed by Neely[20].

TABLE 1. Cochlear parameters by Lesser and Berkeley.

(1)

(2)

(3)

(4)

the basilar membrane and that the displacement η of 
the membrane is a function of the position and the 
time specified by

(5)
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FIGURE 1. Two dimensional model of the cochlea.

Therefore the fluid is the only means of propagation 
of the longitudinal wave, when there is a sinusoidal 
excitation the pressure in the fluid Pd(x, y) is the differ-
ence between the pressure in the scala tympani Pst(x, 
y) and the pressure in the scala vestibuli Psv(x, y) which 
is given by the following expression

The force generated by the movement of the basilar 
membrane in the axis y within the interval 0 < x < L is 
due to the acceleration ab(x) of the mass of fluid, if the 
density ρ is known then the boundary condition is

This acceleration of the basilar membrane ab is then a 
function of the pressure difference and the admit-
tance Y (x) of the form

The movement of the basilar membrane is always 
considered linear and without longitudinal coupling, 
their mechanical properties are represented by an 
admittance function Y (x) that depends of the physical 
characteristics along of their length of mass m(x), stiff-
ness k(x) and damping c(x) of the form

(6)

(7)

(8)

(9)
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And therefore the impedance Z(x) along the basilar 
membrane is the inverse of the admittance Y (x), 
which is given by

In the Table 2 are shown the parameters of admit-
tance of the basilar membrane as a function of the 
distance from the stapes proposed by Neely.

TABLE 2. Cochlear parameters by Neely.

The objective of this research is to determine the rela-
tionship between the excitation frequency and the 
distance along of the basilar membrane where the 
average power is maximum. This establishes the con-
dition of maximum mechanical energy transfer 
between the basilar membrane and the organ of Corti 
necessary for the activation of the hair cells. The equa-
tion of power in the system is the product of the equa-
tion that modeling the velocity and the equation of the 
excitation force, in order to determine the equation of 
velocity first is necessary to know the equation of dis-
placement as a function of impedance.

The general equation of the system is obtained using 
the Lagrange’s equation for dissipative mechanical 
systems, if a solution for complex exponential is pro-
posed then the equation of displacement in relation to 
the impedance is determined, the term of amplitude 
in the real part of the resulting equation is the ampli-
tude of resonance. Considering the kinetic energy KE, 
the potential energy P E and the dissipation energy DE, 

the Lagrange’s equation for modeling the displace-
ment x of the basilar membrane is

The equations of kinetic energy, potential energy and 
dissipation energy for the model of the basilar mem-
brane as a forced damped harmonic oscillator pro-
posed by Lesser and Berkeley are given by

(10)

Mechanical resonance
in the basilar membrane

(12)

(14)

(13)

(11)

Solving the terms of the Lagrange’s equation (11) from 
the equations of energies for the system implies that

(15)

(16)

(17)

(18)

The sum of the terms obtained provides the equation 
of motion for the model of the basilar membrane as a 
system of forced damped harmonic oscillators and if it 
is considered that the excitation force F in the stapes is 
defined by a cosine function of magnitude F0 and 
angular frequency ωf , then the equation of the system 
is given by

(19)
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To get the equation of displacement of the basilar 
membrane is proposed to provide solution to the gen-
eral equation (19) by the method of complex exponen-
tial, whereby the displacement ẋ, the velocity ẍ, the 
aceleration x and the force F are defined by

If in the equation of system 19 are replaced the com-
plex solutions, the term of displacement is reduced 
algebraically and the exponential terms are elimi-
nated, then the equation that defines the displace-
ment x of the basilar membrane is obtained.

The resulting equation is now in terms of the mechan-
ical impedance Z of the same shape as the model of 
Neely (10).

(20)

(21)

(23)

(22)

(24)

(25)

(26)

(27)

(28)

This equation (28) can be expressed as a phasor Z = 
|Z|ej Θ, if the angular frequency of excitation is expressed 
as ω = 2πf and there are considered the mechanical 
parameters of mass m(x), damping c(x) and stiffness 
k(x) along of the basilar membrane. Then the terms of 
magnitude and phase are defined by

(29)

(30)

And therefore the equation of the displacement of the 
basilar membrane can be expressed in the form

(31)

(32)

Using the Euler’s identity an expression in terms of 
functions trigonometric is obtained.

(33)

The real part of the equation (33) represents the phys-
ical displacement of the basilar membrane.

(34)

If the magnitude of impedance is expressed in the 
terms of mass m(x), damping c(x), stiffness k(x) and 
angular excitation frequency ωf = 2πf, the amplitude of 
displacement Ax is given by

(35)
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To obtain the equation of the velocity is necessary to 
derive the equation of displacement (34), having the 
following

Again if the angular frequency and the mechanical 
parameters are replaced in the equation (36), the ampli-
tude of the velocity Av is

(36)

(37)

The equation of velocity that models the behavior of 
the basilar membrane indicates that for each exitacion 
frequency corresponds a distance along of the mem-
brane where the amplitude has a maximum value and 
therefore the kinetic energy is also maxima.

If the power in the system is known also it is possible 
to determine the position on the membrane where 
there is maximum energy transfer, which allows the 
activation of the hair cells in the organ of Corti. 

The power p in the model of the basilar membrane is 
defined as the multiplication of the equation of the 
velocity v (36) and the equation that defines the exci-
tation force F given by

(38)

Physical model of power

If the equation (38) is rearranged algebraically con-
sidering trigonometric identities the following equa-
tion is obtained

(39)

As the excitation force on the basilar membrane is a 
cosine function it is necessary to consider the average 
power P , which is defined as

(40)

Substituting in this equation the expression for the 
power p (39), the resulting integral is

(41)

The integration of the terms is zero and therefore the 
average power on the basilar membrane is given only 
by the first term.

(42)

This equation can be expressed in terms of the angu-
lar frequency ω = 2πf and the mechanical parameters 
of impedance of mass m(x), damping c(x), and stiffness 
k(x) as

(43)
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EXPERIMENTS AND RESULTS

The power analysis is compared with the results 
obtained from the finite difference method applied to 
the Laplace equation developed by Neely and the 
experimental measurements of Békesy, in all the 
experiments are considered the same set of frequen-
cies described in the original papers in order to com-
pare the results obtained with both methodologies. 
The first experiment is to determine the position along 
of the basilar membrane using the parameters of Neely 
where the amplitude of the equation of displacement 
using mechanical resonance and the amplitude of the 
equation of power average are maximal.

If it is considered that the magnitude of the excitation 
force F0 in the stapes is normalized the equation (35) 
determines the frequency value of mechanical reso-
nance where is the maximum amplitude for a speci-
fied distance of evaluation. The Figure 2 shows the 
results obtained for the same set of frequencies 
reported by Neely in his paper of 400Hz, 570Hz, 
800Hz, 1130Hz, 1600Hz, 2260Hz, 3200 Hz, 4520Hz, 
6390Hz and 9040Hz. In the axis y are the values of the 
amplitudes Ax(f, x) referenced to 1000nm in decibels 
and in axis x are the values of the excitation frequen-
cies f in Hertz.

FIGURE 2. Amplitude of displacement as a function of frequency (Neely parameters).
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The lower frequencies correspond to the position x 
along of the basilar membrane near to the helicotrema 
in the cochlea and the high frequencies are in the part 
adjacent to the oval window which is connected to the 
stapes, the results of this behavior are similar to the 
reported by Neely. The Figure 3 shows the results 
obtained using the power average analysis with the 
equation (43) for the same set of frequencies from the 
previous experiment. In the axis y are the averages 
power p(f, x) on the basilar membrane in dyn − cm/s 
and in the axis x are the values of the excitation fre-
quencies f in Hertz. As it is shown in the Figure 3 the 
magnitude of the power average for these specific fre-

FIGURE 3. Power average as a function of frequency (Neely parameters).

quencies has a constant value for each excitation fre-
quency, which validates that the power exerted on 
each section of the basilar membrane is always the 
same. This condition also means that the kinetic 
energy is always constant, therefore this value is the 
energy necessary for the maximum mechanical energy 
transfer between the basilar membrane and the organ 
of Corti to activate the hair cells. The Table 3 presents 
the comparison between the results of the relation-
ship frequency-distance for the function of admit-
tance in the finite difference method developed by 
Neely and the methods of power analysis and mechan-
ical resonance.
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In the results shown in the Table 3 can be seen that 
the distances obtained using the power analysis repre-
sent the physical behavior of the basilar membrane in 
the same way that the finite difference method devel-
oped by Neely, therefore the proposed methodology is 
validated. In a second experiment are compared the 
methods of average power and mechanical resonance 
using the mechanical parameters of Lesser and 

TABLE 3. Power Analysis vs. Finite Difference.

The Figure 4 shows the behavior of the function 
between the amplitude and frequency for the dis-
tances evaluated, this is similar to the results of the 
experimental measurements reported by Békésy. It is 
also possible to observe that the amplitude of the wave 
is close to helicotrema for low frequencies and is close 
to apex for high frequencies being this consistent with 
the place theory of hearing. An interesting aspect of 
the graphics obtained is that shows the difference of 

Berkeley with the experimental results of Békésy. The 
Figure 4 shows the results of the mechanical reso-
nance for the frequencies reported in the works of 
Békésy of 200Hz, 400Hz, 800Hz, 1600Hz and 2800Hz , 
again similar to the first experiment in the axis y are 
the values of the amplitudes Ax(f, x) referenced to 
1000nm in decibels and in the axis x are the values of 
the excitation frequencies f in Hertz.

behavior between a model that uses variable damping 
proposed by Lesser and Berkeley respect to a model 
with constant damping developed by Neely. In the 
Figure 5 are presented the results of the power analy-
sis for the same set of frequencies reported previously, 
and again similar to the graphs of the Figure 3 in the 
axis y are the average powers p(f, x) on the basilar 
membrane in dyn − cm/s and in the axis x are the val-
ues of the excitation frequencies f in Hertz.
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FIGURE 5. Power average as a function of frequency (Lesser and Berkeley parameters).

FIGURE 4. Displacement as a function of frequency (Lesser and Berkeley parameters).
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The power analysis developed has the advantage over 
the previous models in two-dimensions of the cochlea 
of determining the relationship between the excitation 
frequency and the distance along of the basilar mem-
brane where the average power is maximal. This dis-
tance represents the position where there is maximum 
transfer of mechanical energy between the basilar 
membrane and the organ of Corti necessary for the 
activation of the hair cells. The expression obtained for 
the average power depends only of the mechanical 
parameters of the basilar membrane of mass, damping, 
stiffness and the values of magnitude and frequency of 
the excitation force in the system.

The results in the graphics of the relationship between 
the amplitude of resonance and the excitation fre-
quency (Figure 2, Figure 4) and the relationship 
between the average power and the excitation fre-
quency (Figure 3, Figure 5), are fully consistent with 
those reported in the original works of Neely using the 

finite difference method (Table 3) and with the experi-
mental measurements of Bekesy (Table 4). In both 
experiments the same set of frequencies of evaluation 
and the same mechanical parameters of the basilar 
membrane reported in the original papers were used in 
order to compare the results between the different 
methodologies, obtaining satisfactory results.

In the Figure 3 can be seen an interesting result of this 
research, this shows that the value obtained of average 
power for each relationship between the excitation fre-
quency and the distance along the basilar membrane is 
always constant. This validates that each position 
along of the basilar membrane is always excited with 
the same kinetic energy being this value the necessary 
for the activation of the hair cells. In contrast the 
Figure 5 shows the effects of attenuation in the ampli-
tude of the average power when the mechanical param-
eter of damping is variable and therefore the kinetic 
energy along of the basilar membrane is not constant.

CONCLUSIONS

TABLE 4. Power Analysis vs. Experiments of Békésy.

The Figure 5 shows that the amplitudes of the average 
powers are not constant when is considering a variable 
damping as a function of distance. The Table 4 presents 
the comparison between the results obtained using the 

average power and the mechanical resonance using the 
parameters of Lesser and Berkeley with the relation 
frequency distance in the cochlea determined with 
experimental measurements by Békésy.
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