Biomechanical Analysis of a Hip Prosthesis Using a Finite Elements

Authors

  • Ana Beatríz Martínez-Valencia Universidad Michoacana de San Nicolás de Hidalgo, México https://orcid.org/0000-0002-5108-2355
  • Karina Hernández-Romero Universidad Michoacana de San Nicolás de Hidalgo, México
  • Luis Béjar-Gómez Universidad Michoacana de San Nicolás de Hidalgo, México
  • Miguel Villagómez-Galindo Universidad Michoacana de San Nicolás de Hidalgo, México https://orcid.org/0000-0002-4560-2529

DOI:

https://doi.org/10.17488/RMIB.41.2.4

Keywords:

Biomechanical analysis, Computer-aided design, Finite elements, Hip prosthesis

Abstract

This paper shows a biomechanical analysis of a hip prosthesis under conditions of loads associated with daily activities. For which it compared three metallic materials for the manufacture of a customized prosthesis from medical images, it was used cloud platforms with computer-aided design and finite element analysis. Two models of prosthesis one hollow and the other one solid using parametric spline curves were designed and analyzed. The biomechanical analysis required a mesh size consisting of 2’537,684 tetrahedral elements and 471,335 nodes to study seven cases of postures for a person weighing 75 kg. These cases were analyzed based on 316L stainless steel, Ti-6AL-4V alloy, and another L-605 alloy. It was observed that with activities such as jogging, climbing and descending stairs, materials 316L, and L-605 present the risk of plastic deformation and even fracture. The results show that the most suitable material for the manufacture of this type of prosthesis is the Ti-6Al-4V, which allows us to make both solid and hollow models. Assuming this last material is saved and improves the prosthesis lightness.

Downloads

Download data is not yet available.

References

Charnley J, Cupic Z. The nine and ten year results of the low-friction arthroplasty of the hip. Clin Orthop Relat Res. 1973;95:9–25.

Griza S, Kwietniewski C, Tarnowski GA, Bertoni F, Reboh Y, Strohaecker TR, et al. Fatigue failure analysis of a specific total hip prosthesis stem design. Int J Fatigue [Internet]. el 1 de agosto de 2008 [citado el 12 de diciembre de 2019];30(8):1325–32. Disponible en: https://www.sciencedirect.com/science/article/pii/S0142112307003167

Hedia HS, Barton DC, Fisher J, Elmidany TT. A method for shape optimization of a hip prosthesis to maximize the fatigue life of the cement. Med Eng Phys [Internet]. el 1 de diciembre de 1996 [citado el 12 de diciembre de 2019];18(8):647–54. Disponible en: https://www.sciencedirect.com/science/article/pii/S1350453396000252?via%3Dihub

Baxmann M, Pfaff AM, Schilling C, Grupp TM, Morlock MM. Biomechanical Evaluation of the Fatigue Performance, the Taper Corrosion and the Metal Ion Release of a Dual Taper Hip Prosthesis under Physiological Environmental Conditions. Biotribology [Internet]. el 1 de diciembre de 2017 [citado el 12 de diciembre de 2019];12:1–7. Disponible en: https://www.sciencedirect.com/science/article/pii/S2352573817300185

Lanzutti A, Andreatta F, Rossi L, Di Benedetto P, Causero A, Magnan M, et al. Corrosion fatigue failure of a high carbon CoCrMo modular hip prosthesis: Failure analysis and electrochemical study. Eng Fail Anal [Internet]. el 1 de noviembre de 2019 [citado el 12 de diciembre de 2019];105:856–68. Disponible en: https://www.sciencedirect.com/science/article/pii/S1350630719308477

Gross S, Abel EW. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J Biomech [Internet]. el 1 de agosto de 2001 [citado el 12 de diciembre de 2019];34(8):995–1003. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021929001000720?via%3Dihub

Sun C, Wang L, Kang J, Li D, Jin Z. Biomechanical Optimization of Elastic Modulus Distribution in Porous Femoral Stem for Artificial Hip Joints. J Bionic Eng. el 1 de julio de 2018;15(4):693–702.

Yan W, Berthe J, Wen C. Numerical investigation of the effect of porous titanium femoral prosthesis on bone remodeling. Mater Des. abril de 2011;32(4):1776–82.

Martel O, Afonso H, Bermejo J, Cuadrado A, Monopoli D. Análisis comparativo de prótesis de cadera: implantes tradicionales frente a implantes mínimamente invasivos. Rev Iberoam Ing mecánica. 2011;15(2):85–94.

Domínguez-HernándeZ VM, Carbajal Romero MF, Rico Martínez G, Urriolagoitia Calderón G. Análisis de una prótesis no convencional bloqueada para cadera mediante el método del elemento finito. Rev Mex Ing Biomédica; Vol 24 Núm 1 Marzo [Internet]. el 15 de marzo de 2003; Disponible en: http://rmib.com.mx/index.php/rmib/article/view/279

Bae JY, Farooque U, Lee KW, Kim GH, Jeon I, Yoon TR. Development of hip joint prostheses with modular stems. CAD Comput Aided Des [Internet]. el 1 de septiembre de 2011 [citado el 12 de diciembre de 2019];43(9):1173–80. Disponible en: https://www.sciencedirect.com/science/article/pii/S001044851100114X

Niemczewska-Wójcik M. The influence of the surface geometric structure on the functionality of implants. Wear [Internet]. el 3 de junio de 2011 [citado el 12 de diciembre de 2019];271(3–4):596–603. Disponible en: https://www.sciencedirect.com/science/article/pii/S0043164810002474

Fabio GALBUSERA Ing Bernardo INNOCENTI I. FE Parametric Model (Patient Specific) of a Femur. 2015; Disponible en: https://www.politesi.polimi.it/bitstream/10589/133375/1/2017_4_Canci.pdf

Oltra AM. Estudio de diseño y cálculo de una prótesis de cadera. Estudio de diseño y calculo de una prótesis de cadera. Universitat Poliècnica de Valencia; 2015.

Arellano Guerrero RE. Análisis estático de prótesis de cadera tipo Spotorno® mediante F.E.M. Universidad Nacional Autónoma de México;

Hazlehurst KB. The adoption of laser melting technology for the manufacture of functionally graded cobalt chrome alloy femoral stems [Internet]. 2014. Disponible en: http://wlv.openrepository.com/wlv/handle/2436/332114

Zapico PL, Resumen I. Diseño de una prótesis liviana de cadera con la posibilidad de incorporar medicación. 2018; Disponible en: http://oa.upm.es/49719/1/TFG_PAULA_LOSA_ZAPICO.pdf

Helena HJ. THEORY OF ELASTICITY AND PLASTICITY. PHI Learning Pvt. Ltd.; 2017.

Delgado rosas M, Enriquez Espino J. Distribución de esfuerzos en una prótesis parcial de cadera cementada. Ing Mecánica Tecnol y Desarro [Internet]. el 24 de marzo de 2005;2(1):1–5. Disponible en: https://www.redalyc.org/articulo.oa?id=76820101

Heller MO, Bergmann G, Kassi J-P, Claes L, Haas NP, Duda GN. Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech [Internet]. 2005;38(5):1155–63. Disponible en: http://www.sciencedirect.com/science/article/pii/S002192900400260X

I ÁMD, García J, Figal D, Ii C, Manuel L, Milián R, et al. Comportamiento a fatiga del vástago de una prótesis para cadera al caminar//Fatigue behavior stem hip prosthesis for walking. Rev Ing Mecánica. 2014;17(1):1–11.

Published

2020-07-28

How to Cite

Martínez-Valencia, A. B., Hernández-Romero, K., Béjar-Gómez, L., & Villagómez-Galindo, M. (2020). Biomechanical Analysis of a Hip Prosthesis Using a Finite Elements. Revista Mexicana De Ingenieria Biomedica, 41(2), 53–65. https://doi.org/10.17488/RMIB.41.2.4

Issue

Section

Research Articles

Dimensions Citation