Biomechanical Analysis of a Hip Prosthesis Using a Finite Elements
DOI:
https://doi.org/10.17488/RMIB.41.2.4Keywords:
Biomechanical analysis, Computer-aided design, Finite elements, Hip prosthesisAbstract
This paper shows a biomechanical analysis of a hip prosthesis under conditions of loads associated with daily activities. For which it compared three metallic materials for the manufacture of a customized prosthesis from medical images, it was used cloud platforms with computer-aided design and finite element analysis. Two models of prosthesis one hollow and the other one solid using parametric spline curves were designed and analyzed. The biomechanical analysis required a mesh size consisting of 2’537,684 tetrahedral elements and 471,335 nodes to study seven cases of postures for a person weighing 75 kg. These cases were analyzed based on 316L stainless steel, Ti-6AL-4V alloy, and another L-605 alloy. It was observed that with activities such as jogging, climbing and descending stairs, materials 316L, and L-605 present the risk of plastic deformation and even fracture. The results show that the most suitable material for the manufacture of this type of prosthesis is the Ti-6Al-4V, which allows us to make both solid and hollow models. Assuming this last material is saved and improves the prosthesis lightness.
Downloads
References
Charnley J, Cupic Z. The nine and ten year results of the low-friction arthroplasty of the hip. Clin Orthop Relat Res. 1973;95:9–25.
Griza S, Kwietniewski C, Tarnowski GA, Bertoni F, Reboh Y, Strohaecker TR, et al. Fatigue failure analysis of a specific total hip prosthesis stem design. Int J Fatigue [Internet]. el 1 de agosto de 2008 [citado el 12 de diciembre de 2019];30(8):1325–32. Disponible en: https://www.sciencedirect.com/science/article/pii/S0142112307003167
Hedia HS, Barton DC, Fisher J, Elmidany TT. A method for shape optimization of a hip prosthesis to maximize the fatigue life of the cement. Med Eng Phys [Internet]. el 1 de diciembre de 1996 [citado el 12 de diciembre de 2019];18(8):647–54. Disponible en: https://www.sciencedirect.com/science/article/pii/S1350453396000252?via%3Dihub
Baxmann M, Pfaff AM, Schilling C, Grupp TM, Morlock MM. Biomechanical Evaluation of the Fatigue Performance, the Taper Corrosion and the Metal Ion Release of a Dual Taper Hip Prosthesis under Physiological Environmental Conditions. Biotribology [Internet]. el 1 de diciembre de 2017 [citado el 12 de diciembre de 2019];12:1–7. Disponible en: https://www.sciencedirect.com/science/article/pii/S2352573817300185
Lanzutti A, Andreatta F, Rossi L, Di Benedetto P, Causero A, Magnan M, et al. Corrosion fatigue failure of a high carbon CoCrMo modular hip prosthesis: Failure analysis and electrochemical study. Eng Fail Anal [Internet]. el 1 de noviembre de 2019 [citado el 12 de diciembre de 2019];105:856–68. Disponible en: https://www.sciencedirect.com/science/article/pii/S1350630719308477
Gross S, Abel EW. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J Biomech [Internet]. el 1 de agosto de 2001 [citado el 12 de diciembre de 2019];34(8):995–1003. Disponible en: https://www.sciencedirect.com/science/article/pii/S0021929001000720?via%3Dihub
Sun C, Wang L, Kang J, Li D, Jin Z. Biomechanical Optimization of Elastic Modulus Distribution in Porous Femoral Stem for Artificial Hip Joints. J Bionic Eng. el 1 de julio de 2018;15(4):693–702.
Yan W, Berthe J, Wen C. Numerical investigation of the effect of porous titanium femoral prosthesis on bone remodeling. Mater Des. abril de 2011;32(4):1776–82.
Martel O, Afonso H, Bermejo J, Cuadrado A, Monopoli D. Análisis comparativo de prótesis de cadera: implantes tradicionales frente a implantes mínimamente invasivos. Rev Iberoam Ing mecánica. 2011;15(2):85–94.
Domínguez-HernándeZ VM, Carbajal Romero MF, Rico Martínez G, Urriolagoitia Calderón G. Análisis de una prótesis no convencional bloqueada para cadera mediante el método del elemento finito. Rev Mex Ing Biomédica; Vol 24 Núm 1 Marzo [Internet]. el 15 de marzo de 2003; Disponible en: http://rmib.com.mx/index.php/rmib/article/view/279
Bae JY, Farooque U, Lee KW, Kim GH, Jeon I, Yoon TR. Development of hip joint prostheses with modular stems. CAD Comput Aided Des [Internet]. el 1 de septiembre de 2011 [citado el 12 de diciembre de 2019];43(9):1173–80. Disponible en: https://www.sciencedirect.com/science/article/pii/S001044851100114X
Niemczewska-Wójcik M. The influence of the surface geometric structure on the functionality of implants. Wear [Internet]. el 3 de junio de 2011 [citado el 12 de diciembre de 2019];271(3–4):596–603. Disponible en: https://www.sciencedirect.com/science/article/pii/S0043164810002474
Fabio GALBUSERA Ing Bernardo INNOCENTI I. FE Parametric Model (Patient Specific) of a Femur. 2015; Disponible en: https://www.politesi.polimi.it/bitstream/10589/133375/1/2017_4_Canci.pdf
Oltra AM. Estudio de diseño y cálculo de una prótesis de cadera. Estudio de diseño y calculo de una prótesis de cadera. Universitat Poliècnica de Valencia; 2015.
Arellano Guerrero RE. Análisis estático de prótesis de cadera tipo Spotorno® mediante F.E.M. Universidad Nacional Autónoma de México;
Hazlehurst KB. The adoption of laser melting technology for the manufacture of functionally graded cobalt chrome alloy femoral stems [Internet]. 2014. Disponible en: http://wlv.openrepository.com/wlv/handle/2436/332114
Zapico PL, Resumen I. Diseño de una prótesis liviana de cadera con la posibilidad de incorporar medicación. 2018; Disponible en: http://oa.upm.es/49719/1/TFG_PAULA_LOSA_ZAPICO.pdf
Helena HJ. THEORY OF ELASTICITY AND PLASTICITY. PHI Learning Pvt. Ltd.; 2017.
Delgado rosas M, Enriquez Espino J. Distribución de esfuerzos en una prótesis parcial de cadera cementada. Ing Mecánica Tecnol y Desarro [Internet]. el 24 de marzo de 2005;2(1):1–5. Disponible en: https://www.redalyc.org/articulo.oa?id=76820101
Heller MO, Bergmann G, Kassi J-P, Claes L, Haas NP, Duda GN. Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech [Internet]. 2005;38(5):1155–63. Disponible en: http://www.sciencedirect.com/science/article/pii/S002192900400260X
I ÁMD, García J, Figal D, Ii C, Manuel L, Milián R, et al. Comportamiento a fatiga del vástago de una prótesis para cadera al caminar//Fatigue behavior stem hip prosthesis for walking. Rev Ing Mecánica. 2014;17(1):1–11.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Miguel Villagómez-Galindo, Ana Beatríz Martínez-Valencia, Karina Hernández-Romero, Luis Béjar-Gómez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.