Set of Simulators of the Electrophysiology of the A-Type Potassium Current (IA) in Neurons
DOI:
https://doi.org/10.17488/RMIB.41.3.2Keywords:
A-type potassium current, Simulators, Virtual experimentsAbstract
The A-type potassium current (IA) participates in important brain functions, including neuronal excitability, synaptic integration, and regulation of action potential patterns and fring frequency. Based on the characterization of its electrophysiological properties by current and voltage clamp techniques, mathematical models have been developed that reproduce IA function. For such models, it is necessary to numerically solve equations and utilize hardware with special speed and performance characteristics. Since specifc software for studying IA is not found on the Internet, the aim of this work was to develop a set of simulators grouped into three computer programs: (1) IA Current, (2) IA Constant-V Curves and (3) IA AP Train. These simulators provide a virtual reproduction of experiments on neurons with the possibility of setting the current and voltage, which allows for the study of the electrophysiological and biophysical characteristics of IA and its effect on the train of action potentials. The mathematical models employed were derived from the work of Connor et al., giving rise to Hodgkin-Huxley type models. The programs were developed in Visual Basic® and the differential equation systems were simultaneously solved numerically. The resulting system represents a breakthrough in the ability to replicate IA activity in neurons.
Downloads
References
Randall C, Burkholder T. Hands-on laboratory experience in teaching-learning physiology. Adv Physiol Educ. 1990;259(4):S4–7. https://doi.org/10.1152/advances.1990.259.6.S4
Woodhull-McNeal AP. Project labs in physiology. Adv Physiol Educ. 1992;263(6):S29–32. https://doi.org/10.1152/advances.1992.263.6.S29
Bish JP, Schleidt S. Effective use of computer simulations in an introductory neuroscience laboratory. J Undergrad Neurosci Educ. 2008;6(2):64–7.
Diwakar S, Parasuram H, Medini C, Raman R, Nedungadi P, Wiertelak E, et al. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case studies and Classroom Scenarios. J Undergrad Neurosci Educ. 2014;12(2):130–9.
Maran NJ, Glavin RJ. Low- to high-fidelity simulation - A continuum of medical education? Med Educ Suppl. 2003;37(1):22–8. https://doi.org/10.1046/j.1365-2923.37.s1.9.x
Oriol NE, Hayden EM, Joyal-Mowschenson J, Muret-Wagstaff S, Faux R, Gordon JA. Using immersive healthcare simulation for physiology education: Initial experience in high school, college, and graduate school curricula. Am J Physiol - Adv Physiol Educ. 2011;35(3):252–9. https://doi.org/10.1152/advan.00043.2011
Harris DM, Ryan K, Rabuck C. Using a high-fidelity patient simulator with first-year medical students to facilitate learning of cardiovascular function curves. Am J Physiol - Adv Physiol Educ. 2012;36(3):213–9. https://doi.org/10.1152/advan.00058.2012
Anyanwu GE, Agu AU, Anyaehie UB. Enhancing learning objectives by use of simple virtual microscopic slides in cellular physiology and histology: Impact and attitudes. Am J Physiol - Adv Physiol Educ. 2012;36(2):158–63. https://doi.org/10.1152/advan.00008.2012
Av-Ron E, Byrne JH, Baxter DA. Teaching basic principles of neuroscience with computer simulations. J Undergrad Neurosci Educ. 2006;4(2):40–52.
Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in Nerve. J Physiol. 1952;117(4):500–44. https://doi.org/10.1113/jphysiol.1952.sp004764
Segev I. Temporal Interactions Between Post-Synaptic Potentials. In Bower J, Beeman D (eds.). The book of GENESIS, 2nd ed. New York: Springer-Verlag; 1998. 79–96p. https://doi.org/10.1007/978-1-4612-1634-6_6
Carnevale NT, Hines ML. The NEURON Book. Cambridge: Cambridge University Press; 2006. 480 p.
Izhikevich EM, Edelman GM. Large-scale model of mammalian thalamocortical systems. PNAS. 2008;105(9):3593–8. https://doi.org/10.1073/pnas.0712231105
Hernández OE, Zurek EE. Teaching and learning the Hodgkin-Huxley model based on software developed in NEURON’s programming language hoc. BMC Med Educ. 2013;13(70):1-9. https://doi.org/10.1186/1472-6920-13-70
Reyes-Lazalde A, Reyes-Monreal M, Pérez-Bonilla ME. Desarrollo de un simulador de los experimentos clásicos y actualizados de fijación de Voltaje de Hodgkin y Huxley. Rev Mex Ing Biomed. 2016;37(2):135–48. https://doi.org/10.17488/rmib.37.2.1
Reyes Lazalde A, Pérez-Bonilla ME, Funchs-Gómez OL, Reyes-Monreal M. Interactive simulators to study the passive properties of the axon and the dendritic tree. Rev Mex Ing Biomed [Internet]. 2012;33(1):29–40. Available from: http://www.rmib.mx/index.php/rmib/article/view/226
Goodman D, Brette R. Brian: a simulator for spiking neural networks in Python. Front Neuroinform. 2008;2(NOV):1–10. https://doi.org/10.3389/neuro.11.005.2008
Demir SS. Simulation-Based Training In Electrophysiology By iCELL. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Shangai: IEEE-EMBS;2005:851–4. https://doi.org/10.1109/IEMBS.2005.1616549
Ribarič S, Kordaš M. Teaching cardiovascular physiology with equivalent electronic circuits in a practically oriented teaching module. Am J Physiol - Adv Physiol Educ. 2011;35(2):149–60. https://doi.org/10.1152/advan.00072.2010
Reyes Lazalde A, Reyes Monreal M, Pérez Bonilla ME. Experimentación virtual con el simulador dosis-respuesta como herramienta docente en biología. Apertura. 2016;8(2):22–37. http://dx.doi.org/10.32870/Ap.v8n2.855
Vega OA, Londoño-Hincapié SM, Toro-Villa S. Laboratorios virtuales para la enseñanza de las ciencias. Informática. 2016;(35):97–110. https://doi.org/10.30554/ventanainform.35.1849.2016
Hagiwara S, Kusano K, Saito N. Membrane changes of Onchidium nerve cell in potassium‐rich media. J Physiol. 1961;155(3):470–89. https://doi.org/10.1113/jphysiol.1961.sp006640
Cai S-Q, Li W, Sesti F. Multiple modes of A-type potassium current regulation. Curr Pharm Des. 2007;13(31):3178–84. https://doi.org/10.2174/138161207782341286
Connor JA, Walter D, McKown R. Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophys J. 1977;18(1):81–102. https://dx.doi.org/10.1016%2FS0006-3495(77)85598-7
Gustafsson B, Galvan M, Grafe P, Wigström H. A transient outward current in a mammalian central neurone blocked by 4-aminopyridine. Nature. 1982;299(5880):252–4. https://doi.org/10.1038/299252a0
Galvan M, Sedlmeir C. Outward currents in voltage‐clamped rat sympathetic neurones. J Physiol. 1984;356(1):115–33. https://doi.org/10.1113/jphysiol.1984.sp015456
Bargas J, Galarraga E, Aceves J. An early outward conductance modulates the firing latency and frequency of neostriatal neurons of the rat brain. Exp Brain Res. 1989;75(1):146–56. https://doi.org/10.1007/BF00248538
Sanchez RM, Surkis A, Leonard CS. Voltage-clamp analysis and computer simulation of a novel cesium- resistant a-current in guinea pig laterodorsal tegmental neurons. J Neurophysiol. 1998;79(6):3111–26. https://doi.org/10.1152/jn.1998.79.6.3111
Fransén E, Tigerholm J. Role of A-type potassium currents in excitability, network synchronicity, and epilepsy. Hippocampus. 2010;20(7):877–87. https://doi.org/10.1002/hipo.20694
Migliore M, Hoffman DA, Magee JC, Johnston D. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci. 1999;7(1):5–15. https://doi.org/10.1023/A:1008906225285
Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM. ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci. 2004;17(1):7–11. https://doi.org/10.1023/B:JCNS.0000023869.22017.2e
Lemus-Aguilar I, Bargas J, Tecuapetla F, Galárraga E, Carrillo-Reid L. Diseño modular de instrumentación virtual para la manipulación y el análisis de señales electrofisiológicas. Rev Mex Ing Biomédica [Internet]. 2006;27(2):82–92. Available from: http://www.rmib.mx/index.php/rmib/article/view/359
Cronin J. Mathematical Aspects of Hodgkin-Huxley Neural Theory. Cambridge: Cambridge University Press; 1987. 261p.
Sterratt D, Graham B, Gillies A, Willshaw D. Principles of Computational Modelling in Neuroscience. Cambridge: Cambridge University Press; 2011. 300 p.
Connor JA, Stevens CF. Inward and delayed outward membrane currents in isolated neural somata under voltage clamp. J Physiol. 1971;213(1):1–19. https://doi.org/10.1113/jphysiol.1971.sp009364
Connor JA, Stevens CF. Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol. 1971;213(1):21–30. https://doi.org/10.1113/jphysiol.1971.sp009365
Connor JA, Stevens CF. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol. 1971;213(1):31–53. https://doi.org/10.1113/jphysiol.1971.sp009366
Zill DG. Ecuaciones diferenciales con aplicaciones. 2nd Ed. México: Grupo Editorial Iberoamérica; 1988. 516 p.
Rush ME, Rinzel J. The potassium A-current, low firing rates and rebound excitation in Hodgkin-Huxley models. Bull Math Biol. 1995;57(6):899–929. https://doi.org/10.1007/BF02458299
Huguenard JR, McCormick DA. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol. 1992;68(4):1373–83. https://doi.org/10.1152/jn.1992.68.4.1373
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Mexicana de Ingeniería Biomédica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.