Feature Extraction from Distributions of Phase Synchronization Values of EEG Recordings
DOI:
https://doi.org/10.17488/RMIB.42.2.7Keywords:
Epilepsy, Phase analysis, Synchronization, Phase differencesAbstract
Epilepsy is the most common neurological pathology. Despite treatments available to patients only 58% to 73% will be free of seizures. This uncertainty of the treatment’s outcome is the basis of other psychiatric affections to patients who are uncertain of the success of their treatment. Seizure prediction models (SPMs) emerged as an aid to help the patient know if he is susceptible to an imminent crisis; such models are based of continuous monitoring of EEG signals of the patient and subsequent continuous analysis of those signals. Looking for features in the signals which differentiate ictal from interictal is an ongoing field of research which aims to get a robust set of features to feed the SPM and get a high degree of certainty of when the next seizure will occur. In this work we propose the analysis of phase differences of EEG as a method to extract features which are able to discriminate between ictal and preictal states of a patient, in specific the numeric distance between q1 and q3 of the distribution of phase differences, We compare this values with other phase synchronization methods and test our hypothesis getting a p = 0.0001 with our proposed method.
Downloads
References
Acharya UR, Sree SV, Swapna G, et al. Automated EEG analysis of epilepsy: A review. Knowl-Based Syst [Internet]. 2013;45:147-65. Available from: https://doi.org/10.1016/j.knosys.2013.02.014
Bruña R, Maestú F, Pereda E. Phase locking value revisited: teaching new tricks to an old dog. J Neural Eng [Internet]. 2018;15(5):056011. Available from: https://doi.org/10.1088/1741-2552/aacfe4
Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia [Internet]. 2014;55(4):475-82. Available from: https://doi.org/10.1111/epi.12550
Nair DR. Management of Drug-Resistant Epilepsy. Continuum (Minneap Minn) [Internet]. 2016;22(1):157-72. Available from: https://doi.org/10.1212/con.0000000000000297
Sejnowski TJ, Churchland PS, Movshon JA. Putting big data to good use in neuroscience. Nat Neurosci [Internet]. 2014;17:1440-1. Available from: https://doi.org/10.1038/nn.3839
van Mierlo P, Papadopoulou M, Carrette E, et al. Functional brain connectivity from EEG in epilepsy: Seizure prediction and epileptogenic focus localization. Prog Neurobiol [Internet]. 2014;121:19-35. Available from: https://doi.org/10.1016/j.pneurobio.2014.06.004
Camfield P, Camfield C. Idiopathic generalized epilepsy with generalized tonic-clonic seizures (IGE-GTC): a population-based cohort with >20 year follow up for medical and social outcome. Epilepsy Behav [Internet]. 2010;18(1-2):61-3. Available from: https://doi.org/10.1016/j.yebeh.2010.02.014
Ramgopal S, Thome-Souza S, Jackson M, et al. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav [Internet]. 2014;37:291-307. Available from: https://doi.org/10.1016/j.yebeh.2014.06.023
Chen H-H, Cherkassky V. Performance metrics for online seizure prediction. Neural Netw [Internet]. 2020;128:22-32. Available from: https://doi.org/10.1016/j.neunet.2020.04.022
Acharya UR, Hagiwara Y, Adeli H. Automated seizure prediction. Epilepsy Behav [Internet]. 2018;88:251-61. Available from: https://doi.org/10.1016/j.yebeh.2018.09.030
Kuhlmann L, Lehnertz K, Richardson MP, et al. Seizure prediction — ready for a new era. Nat Rev Neurol [Internet]. 2018;14(10):618-30. Available from: https://doi.org/10.1038/s41582-018-0055-2
Detti P, Vatti G, Zabalo Manrqiue de Lara G. EEG Synchronization Analysis for Seizure Prediction: A Study on Data of Noninvasive Recordings. Processes [Internet]. 2020;8(7):846. Available from: https://doi.org/10.3390/pr8070846
Espinoza-Valdez A, González-Garrido A, Luna B, et al. Epileptic brain reorganization dynamics on the basis of the probability of connections. NeuroReport [Internet]. 2015;27(1):1-5. Available from: https://doi.org/10.1097/WNR.0000000000000472
Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. Brain [Internet]. 2007;130(2):314-33. Available from: https://doi.org/10.1093/brain/awl241
Lachaux J-P, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp [Internet]. 1999;8(4):194-208. Available from: https://doi.org/10.1002/(SICI)1097-0193(1999)8:4%3C194::AID-HBM4%3E3.0.CO;2-C
Klonowski W. Everything you wanted to ask about EEG but were afraid to get the right answer. Nonlinear Biomed Phys [Internet]. 2009;3(1):2. Available from: https://doi.org/10.1186/1753-4631-3-2
Fan M, Chou C-A. Detecting Abnormal Pattern of Epileptic Seizures via Temporal Synchronization of EEG Signals. IEEE Trans Biomed Eng [Internet]. 2019;66(3):601-8. Available from: https://doi.org/10.1109/TBME.2018.2850959
Yu H, Cai L, Wu X, et al. Investigation of phase synchronization of interictal EEG in right temporal lobe epilepsy. Physica A [Internet]. 2018;492:931-40. Available from: https://doi.org/10.1016/j.physa.2017.11.023
Alaei HS, Khalilzadeh MA, Gorji A. Online Epileptic Seizure Prediction Using Phase Synchronization and Two Time Characteristics: SOP and SPH. Int Clin Neurosci J [Internet]. 2019;7(1):16-25. Available from: https://doi.org/10.15171/icnj.2020.03
Stevenson N, Tapani K, Lauronen L, Vanhatalo S. A dataset of neonatal EEG recordings with seizure annotations. Sci Data [Internet]. 2019;6:190039. Available from: https://doi.org/10.1038/sdata.2019.39
Alducin Castillo J, Yanez Suárez O, Brust Carmona H. Electroencephalographic analysis of the functional conectivity in habituation by graphics theory. RMIB [Internet]. 2016;37(3):181-200. Available from: https://doi.org/10.17488/RMIB.37.3.3
Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp [Internet]. 2007;28(11):1178-93. Available from: https://doi.org/10.1002/hbm.20346
Baselice F, Sorriso A, Rucco R, Sorrentino P. Phase Linearity Measurement: A Novel Index for Brain Functional Connectivity. IEEE Trans Med Imag [Internet]. 2019;38(4):873-82. Available from: https://doi.org/10.1109/TMI.2018.2873423
Shannon CE. 1 Shannon's Measure of Information. In: Aczél J, Daróczy Z (eds). Mathematics in Science and Engineering [Internet]. New York: Academic Press; Elsevier; 1975. 26-49p. Available from: https://doi.org/10.1016/S0076-5392(08)62730-7
Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. NeuroImage [Internet]. 2018;180:577-93. Available from: https://doi.org/10.1016/j.neuroimage.2017.11.062
Wang L, Long X, Aarts R, et al. A broadband method of quantifying phase synchronization for discriminating seizure EEG signals. Biomed Signal Process Control [Internet]. 2018;52:371-83. Available from: https://doi.org/10.1016/j.bspc.2018.10.019
Sorrentino P, Ambrosanio M, Rucco R, Baselice F. An extension of Phase Linearity Measurement for revealing cross frequency coupling among brain areas. J Neuroeng Rehabil [Internet]. 2019;16(1):135. Available from: https://doi.org/10.1186/s12984-019-0615-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jaime Arturo Quirarte Tejeda , Jorge Luis Flores Nuñez, Rebeca Romo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.