Efficacy of Virtual Reality in Neurorehabilitation of Spinal Cord Injury Patients: A Systematic Review

  • Bruno A. Orsatti-Sánchez Universidad Nacional Autónoma de México
  • Octavio Diaz-Hernandez Universidad Nacional Autónoma de México
Keywords: spinal cord injury, virtual reality, neurorehabilitation, systematic review

Abstract

This systematic review (SR) analyzed the effectiveness of interventions using virtual reality (VR) technology as a neurorehabilitation therapy in people with spinal cord injury (SCI). The SR was developed under the guidelines of the PRISMA statement and the recommendations of the Cochrane Collaboration, along with the PEDro and National Institute of Health scales to assess the risk of bias and methodological quality. The Cochrane, IEEE, BVS/LILACS, MEDLINE/PubMed, and Web of Science databases were browsed to identify studies that, between 2010 and 2020, evaluated the efficacy of these therapies. Out of 353 retrieved studies, 11 were selected after applying the defined inclusion and exclusion criteria. These articles presented good methodological quality as they were mostly controlled clinical trials that analyzed mixed therapies with conventional therapies. Interventions based on non-immersive or immersive VR technology that achieved functional motor, balance, and psycho-emotional health improvement with positive effects on motivation, self-confidence, commitment, and active participation were identified in a total sample of 155 SCI patients. It was concluded that such VR technology is an effective tool of neurorehabilitation complementary to conventional therapies, which promotes functional improvement in SCI patients both in the clinic and at home.

References

World Health Organization. International perspectives on spinal cord injury [Internet]. Geneva: WHO; 2013. Available from: https://www.who.int/disabilities/policies/spinal_cord_injury/en/

Latham R. Lesión de la médula espinal: Esperanza en la investigación [Internet]. Bethesda: National Institute of Neurological Disorders and Stroke; 2005. Spanish. Available from: https://espanol.ninds.nih.gov/trastornos/lesion_de_la_medula_espinal.htm#:~:text=Las%20personas%20con%20lesiones%20de%20la%20m%C3%A9dula%20espinal%20tienen%20un,anticoagulante%20como%20medida%20de%20prevenci%C3%B3n.

Tortora GJ, Derrickson B. Principles of Anatomy and Physiology. 13th edition. Hoboken (NJ): J. Wiley & Sons; 2012.

Strassburguer-Lona K, Hernández-Porras Y, Barquín Santos E. Lesión Medular: guía para el manejo del paciente con LM crónica [Internet]. Madrid: Aspayam-Madrid; 2013. Spanish. Available from: https://www.codem.es/guias/lesion-medular-guia-para-manejo-integral-del-paciente-con-lm-cronica

Northwestern Medicine. Spinal Cord Injury [Internet] Chicago: Northwestern Medicine; 2020. Available from: https://www.nm.org/conditions-and-care-areas/orthopaedics/acute-spinal-cord-injury

Huete-García A, Díaz-Velázquez E. Análisis sobre la lesión medular en España [Internet]. Madrid: Aspaym; 2012. Available from: http://riberdis.cedd.net/handle/11181/5510

National Institute of Child Health and Human Development. How is SCI diagnosed? [Internet]. Bethesda: NICHD; 2016. Available from: https://www.nichd.nih.gov/health/topics/spinalinjury/conditioninfo/diagnosed

Pérez-Estudillo CA, Sánchez-Alonso D, López-Meraz ML, Morgado-Valle C, et. al. Aplicaciones terapéuticas para la lesión de médula espinal. Eneurobiología. 2018; 9(21):141118. Spanish.

Navarrete JM. La realidad virtual como arma terapéutica en rehabilitación. Rehabil Integral. 2010;5(1):40-45. Spanish.

Navarro Araujo GMK. Realidad virtual en la terapia física [dissertation]. [Lima]: Universidad Inca Garcilaso de la Vega; 2017. Spanish.

Urrútia G, Bonfill X. PRISMA declaration: A proposal to improve the publication of systematic reviews and meta-analyses. Med Clin [Internet]. 2010; 135(11):507-511. Available from: https://doi.org/10.1016/j.medcli.2010.01.015

Moher D, Liberati A, Tetzlaff J, et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med [Internet]. 2009; 6(7):e1000097. Available from: https://doi.org/10.1371/journal.pmed.1000097

Liberati A, Altman DG, Tetzlaff J, Mulrow C, et. al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ [Internet]. 2009;339:b2700. Available from: https://doi.org/10.1136/bmj.b2700

Centro Cochrane Iberoamericano. Manual Cochrane de Revisiones Sistemáticas de Intervenciones, versión 5.1.0 [Internet]. Barcelona: Centro Cochrane Iberoamericano; 2012. Available from: http://www.cochrane.es/?q=es/node/269

Silvera Iturrioz C. Algunas orientaciones prácticas para la búsqueda de información en LILACS y PUBMED [Internet]. Montevideo: e-prints in library & information science; 2013. Available from: http://eprints.rclis.org/24012/

Clarivate Analytics. Web of Science Core Collection Help [Internet]. Web of Knowledge; 2020. Available from: https://images.webofknowledge.com/WOKRS533JR18/help/WOS/hp_database.html

National Center for Biotechnology Information. PubMed User Guide [Internet]. NCBI; 2020. Available from: https://pubmed.ncbi.nlm.nih.gov/help/

BIREME. Tutorial de búsqueda LILACS [Internet]. BIREME; 2019. Available from: https://wiki.bireme.org/es/index.php/Tutorial_de_b%C3%BAsqueda_LILACS

Zurita-Cruz JN, Márquez-González H, Miranda-Novales G, Villasís-Keever MA. Estudios experimentales: diseños de investigación para la evaluación de intervenciones en la clínica. Rev Alerg Mex [Internet]. 2018;65(2):178-186. Spanish. Available from: https://doi.org/10.29262/ram.v65i2.376

PEDro. PEDro scale [Internet]. Physiotherapy Evidence Database; 1999. Available from: https://pedro.org.au/english/resources/pedro-scale/

National Institute of Health. Study Quality Assessment Tools [Internet]. NIH. Available from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

D'Addio G, Iuppariello L, Gallo F, Bifulco P, et al. Comparison between clinical and instrumental assessing using Wii Fit System on balance control. 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA) IEEE MeMeA [Internet]. Lisboa: IEEE: 2014:1-5. Available from: https://doi.org/10.1109/MeMeA.2014.6860124

Dimbwadyo-Terrer I, Gil-Agudo A, Segura-Fragoso A, de los Reyes-Guzmán A, et. al. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A pilot Randomized Clinical Trial. Biomed Res Int [Internet]. 2016;2016(6):6397828. Available from: https://doi.org/10.1155/2016/6397828

Dimbwadyo-Terrer I, Trincado-Alonso F, de los Reyes-Guzmán A, Aznar MA, et. al. Upper limb rehabilitation after spinal cord injury: a treatment based on a data glove and an immersive virtual reality environment. Disabil Rehabil Assist Technol [Internet]. 2016;11(6):462-467. Available from: https://doi.org/10.3109/17483107.2015.1027293

Gil-Agudo A, Dimbwadyo-Terrer I, Peñasco-Martin B, de los Reyes-Guzmán A, et al. Experiencia clínica de la aplicación del sistema de realidad TOyRA en la neuro-rehabilitación de pacientes con lesión medular. Rehabilitación [Internet]. 2012;46(1):41-48. Spanish. Available from: https://doi.org/10.1016/j.rh.2011.10.005

Khurana M, Walia S, Noohu M. Study on the Effectiveness of Virtual Reality Game-Based Training on Balance and Functional Performance in Individuals with Paraplegia. Top Spinal Cord Inj Rehabil [Internet]. 2017;23(3):263-270. Available from: https://doi.org/10.1310/sci16-00003

Lakhani A, Martin K, Gray L, Mallison J, et. al. What is the impact of engaging with natural environments delivered via virtual reality on the psycho-emotional health of people with spinal cord injury receiving rehabilitation in hospital? Findings from a pilot randomized controlled trial. Arch Phys Med Rehabil [Internet]. 2020;101(9):1532-1540. Available from: https://doi.org/10.1016/j.apmr.2020.05.013

Tak S, Choi W, Lee S. Game-Based Virtual Reality Training Improves Sitting Balance after Spinal Cord Injury: A Single-Blinded, Randomized Controlled Trial. J Med Sci Technol [Internet]. 2015;56:53-59. Available from: https://doi.org/10.12659/MST.894514

Prasad S, Aikat R, Labani S, Khanna N. Efficacy of Virtual Reality in Upper Limb Rehabilitation in Patients with Spinal Cord Injury: A Pilot Randomized Controlled Trial. Asian Spine J [Internet]. 2018;12(5):927-934. Available from: https://doi.org/10.31616/asj.2018.12.5.927

Sengupta M, Gupta A, Khanna M, Krishnan UKR, et al. Role of Virtual Reality in Balance Training in Patients with Spinal Cord Injury: A Prospective Comparative Pre-Post Study. Asian Spine J [Internet]. 2019;14(1):51-58. Available from: https://doi.org/10.31616/asj.2019.0013

Wen-Hsu S, Ting-Ying C, Wen-Wei T, Cheng H, Jin-Jong C. The effect of virtual reality-enhanced driving protocol in patients following spinal cord injury. J Chin Med Assoc [Internet]. 2012;75(11):600-605. Available from: https://doi.org/10.1016/j.jcma.2012.08.004

Villiger M, Liviero J, Awai L, Stoop R, et. al. Home-Based Virtual Reality-Augmented Training Improves Lower Limb Muscle Strength, Balance, and Functional Mobility following Chronic Incomplete Spinal Cord Injury. Front Neurol [Internet]. 2017;8 :635. Available from: https://doi.org/10.3389/fneur.2017.00635

Massetti T, Dias-da-Silva T, Brusque Crocetta T, Guarnieri R, et. al. The Clinical Utility of Virtual Reality in Neurorehabilitation: A Systematic Review. J Cent Nerv Syst Dis [Internet]. 2018;10:1-18. Available from: https://doi.org/10.1177/1179573518813541

Tieri G, Morone G, Paolucci S, Iosa M. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev Med Devices [Internet]. 2018; 15(2):107-117. Available from: https://doi.org/10.1080/17434440.2018.1425613

Cheng L, Kejimu S, Fengling D, Xiaoqin L, et. al. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson’s disease: A systematic review. PLoS One [Internet]. 2019; 14(11):e0224819. Available from: https://doi.org/10.1371/journal.pone.0224819

Kwakkel G. Impact of intensity of practice after stroke: Issues for consideration. Disabil Rehabil. 2006;28(13-14):823-830. Available from: https://doi.org/10.1080/09638280500534861

Grazia Maggio M, Russo M, Foti Cuzzola M, Destro M, et. al. Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. J Clin Neurosci [Internet]. 2019;65:106-111. Available from: https://doi.org/10.1016/j.jocn.2019.03.017

Laver KE, Lange B, George S, Deutsch JE, et al. Virtual Reality for stroke rehabilitation (Review). Cochrane Database Syst Rev [Internet]. 2017;11(11):CD008349. Available from: https://doi.org/10.1002/14651858.CD008349.pub4

Sin HH, Lee GC. Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. Am J Phys Med Rehabil [Internet]. 2013;92(10):871-880. Available from: https://doi.org/10.1097/PHM.0b013e3182a38e40

Kiper P, Luque-Moreno C, Pernice S, Maistrello L, et al. Functional changes in the lower extremity after non-immersive virtual reality and physiotherapy following stroke. J Rehabil Med [Internet]. 2020;52(11):jrm00122. Available from: https://doi.org/10.2340/16501977-2763

Norouzi-Gheidari N, Hernandez A, Archambault PS, Higgins J, et al. Feasibility, Safety and Efficacy of a Virtual Reality Exergame System to Supplement Upper Extremity Rehabilitation Post-Stroke: A Pilot Randomized Clinical Trial and Proof of Principle. Int J Environ Res Public Health [Internet]. 2019;17(1):113. Available from: https://doi.org/10.3390/ijerph17010113

Triegaardt J, Han TS, Sada C, Sharma S, et al. The role of virtual reality on outcomes in rehabilitation of Parkinson’s disease: meta-analysis and systematic review in 1031 participants. Neurol Sci. [Internet]. 2020;41(3):529-536. Available from: https://doi.org/10.1007/s10072-019-04144-3

Feng H, Li C, Liu J, Wang L, et. al. Virtual Reality Rehabilitation Versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson’s Disease Patients: A Randomized Controlled Trial. Med Sci Monit [Internet]. 2019;25:4186-4192. Available from: https://doi.org/10.12659/MSM.916455

Casuso-Holgado MJ, Martín-Valero R, Carazo AF, Medrano-Sánchez EM, et al. Effectiveness of virtual reality training for balance and gait rehabilitation in people with multiple sclerosis: a systematic review and meta-analysis. Clin Rehabil [Internet]. 2018;32(9):1220-1234. Available from: https://doi.org/10.1177/0269215518768084

Ravi DK, Kumar N, Singhi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy [Internet]. 2017;103(3):245-258. Available from: https://doi.org/10.1016/j.physio.2016.08.004

Aida J, Chau B, Dunn J. Immersive virtual reality in traumatic brain injury rehabilitation: A literature review. NeuroRehabilitation [Internet]. 2018;42(4):441-448. Available from: https:/doi.org/10.3233/NRE-172361

Dunn J, Yeo E, Moghaddampour P, et al. Virtual and augmented reality in the treatment of phantom limb pain: A literature review. NeuroRehabilitation [Internet]. 2017;40(4):595-601. Available from: https://doi.org/10.3233/NRE-171447

Published
2021-06-25
How to Cite
Orsatti Sánchez, B. A., & Diaz Hernandez, O. (2021). Efficacy of Virtual Reality in Neurorehabilitation of Spinal Cord Injury Patients: A Systematic Review. Mexican Journal of Biomedical Engineering, 42(2), 90-103. Retrieved from https://rmib.com.mx/index.php/rmib/article/view/1141
Section
Review Article