Salvia rosmarinus Spenn. Main Applications and Ultrasonic Extraction of Secondary Metabolites: a General Review

Authors

  • José Juan Cedillo-Portillo Universidad Autónoma de Coahuila
  • Wendy Yaneth Villastrigo-López Universidad Autónoma de Coahuila https://orcid.org/0009-0000-9391-2452
  • Adali Oliva Castañeda-Facio Universidad Autónoma de Coahuila https://orcid.org/0000-0003-3780-112X
  • Sandra Cecilia Esparza-González Universidad Autónoma de Coahuila
  • Elia Martha Múzquiz-Ramos Universidad Autónoma de Coahuila https://orcid.org/0000-0001-8626-678X
  • Aidé Sáenz-Galindo Universidad Autónoma de Coahuila

DOI:

https://doi.org/10.17488/RMIB.45.2.3

Keywords:

S. rosmarinus, emerging technologies, ultrasound

Abstract

This paper provides an overview of the various applications of the bioactive compounds found in S. rosmarinus. at present. Additionally, it explores emerging technologies for its extraction, such as ultrasound, which is an effective, fast, and sustainable technology for obtaining these secondary metabolites from this millenary plant. S. rosmarinus has gained considerable importance due to its beneficial properties, including antimicrobial, antioxidant, hepatoprotective, anti-inflammatory, and anticarcinogenic effects. These effects result from the different metabolites, which, without the use of ultrasound, are produced in S. rosmarinus. The main objective of this research is to provide an overview of some of the main applications in which S. rosmarinus is involved and to present a viable and effective alternative for the extraction of the different metabolites it contains using a technique such as ultrasound. The literature review was performed by searching for information on digital platforms such as SciFinder, PubMed, Scopus, and ScienceDirect, using keywords such as Rosemary, S. rosmarinus, ultrasound, green extraction, and secondary metabolite.

Downloads

Download data is not yet available.

References

I. Messaoudi Moussii, K. Nayme, M. Timinouni, J. Jamaleddine, H. Filali, and F. Hakkou, “Synergistic antibacterial effects of Moroccan Artemisia herba alba, Lavandula angustifolia and Rosmarinus officinalis essential oils,” Synergy, vol. 10, art. no. 100057, Jun. 2020, doi: https://doi.org/10.1016/j.synres.2019.100057

A. E. Karadağ, B. Demirci, A. Çaşkurlu, F. Demirci, M. E. Okur, D. Orak, H. Sipahi, K. H. C. Başer, “In vitro antibacterial, antioxidant, anti-inflammatory and analgesic evaluation of Rosmarinus officinalis L. flower extract fractions,” South Afr. J. Bot., vol. 125, pp. 214-220, Sep. 2019, doi: https://doi.org/10.1016/j.sajb.2019.07.039

A. Manilal, K. R. Sabu, M. Shewangizaw, A. Aklilu, M. Seid, B. Merdikios, B. Tsegaye, “In vitro antibacterial activity of medicinal plants against biofilm-forming methicillin-resistant Staphylococcus aureus: efficacy of Moringa stenopetala and Rosmarinus officinalis extracts,” Heliyon, vol. 6, no. 1, art. no. e03303, Jan. 2020, doi: https://doi.org/10.1016/j.heliyon.2020.e03303

L. M. de Macedo, É. M. D. Santos, L. Militão, L. L. Tundisi, J. A. Ataide, E. B. Souto, P. G. Mazzola, “Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and Its Topical Applications: A Review,” Plants, vol. 9, no. 5, art. no. 651, May 2020, doi: https://doi.org/10.3390/plants9050651

M. T. López Luengo, “El romero. Planta aromática con efectos antioxidantes,” Offarm, vol. 27, no. 7, pp. 60-63, Jul. 2008. [Online]. Available: https://www.elsevier.es/es-revista-offarm-4-articulo-el-romero-planta-aromatica-con-13124840

D. R. Berdahl y J. McKeague, “Rosemary and sage extracts as antioxidants for food preservation,” in Handbook of Antioxidants for Food Preservation, F. Shahidi, Ed., Sawstin, United Kingdom: Elsevier, 2015, pp. 177-217, doi: https://doi.org/10.1016/B978-1-78242-089-7.00008-7

J. L. Machado, A. K. Martins Assunção, M. C. Pinto da Silva, A. Silva Dos Reis, et al., “Brazilian Green Propolis: Anti-Inflammatory Property by an Immunomodulatory Activity,” Evid. Based Complement. Alternat. Med., vol. 2012, art. no. 157652, 2012, doi: https://doi.org/10.1155/2012/157652

A. Jaglanian and E. Tsiani, “Rosemary Extract Inhibits Proliferation, Survival, Akt, and mTOR Signaling in Triple-Negative Breast Cancer Cells,” Int. J. Mol. Sci., vol. 21, no. 3, art. no. 810, Jan. 2020, doi: https://doi.org/10.3390/ijms21030810

A. Ali, B. L. Chua, and Y. H. Chow, “An insight into the extraction and fractionation technologies of the essential oils and bioactive compounds in Rosmarinus officinalis L.: Past, present and future,” TrAC - Trends Anal. Chem., vol. 118, pp. 338-351, Sep. 2019, doi: https://doi.org/10.1016/j.trac.2019.05.040

R. S. Borges, B. L. S. Ortiz, A. C. M. Pereira, H. Keita, and J. C. T. Carvalho, “Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved,” J. Ethnopharmacol., vol. 229, pp. 29-45, Jan. 2019, doi: https://doi.org/10.1016/j.jep.2018.09.038

Integrated Taxonomic Information System - Report , “Rosmarinus officinalis.” ITIS. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=32677&print_version=PRT&source=to_print#null (accessed Nov. 22, 2023).

Anjali, S. Kumar, T. Korra, R. Thakur, et al., “Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress,” Plant Stress, vol. 8, art. no. 100154, Jun. 2023, doi: https://doi.org/10.1016/j.stress.2023.100154

M. Lingwan, A. A. Pradhan, A. K. Kushwaha, M. A. Dar, L. Bhagavatula, and S. Datta, “Photoprotective role of plant secondary metabolites: Biosynthesis, photoregulation, and prospects of metabolic engineering for enhanced protection under excessive light,” Environ. Exp. Bot., vol. 209, art. no. 105300, May 2023, doi: https://doi.org/10.1016/j.envexpbot.2023.105300

M. F. Lemos, M. F. Lemos, H. P. Pacheco, D. C. Endringer, and R. Scherer, “Seasonality modifies rosemary’s composition and biological activity,” Ind. Crops Prod., vol. 70, pp. 41-47, Aug. 2015, doi: https://doi.org/10.1016/j.indcrop.2015.02.062

D. Sadeh, N. Nitzan, D. Chaimovitsh, A. Shachter, M. Ghanim, and N. Dudai, “Interactive effects of genotype, seasonality and extraction method on chemical compositions and yield of essential oil from rosemary (Rosmarinus officinalis L.),” Ind. Crops Prod., vol. 138, art. no. 111419, Oct. 2019, doi: https://doi.org/10.1016/j.indcrop.2019.05.068

C. Tschiggerl, F. Bucar, “Investigation of the Volatile Fraction of Rosemary Infusion Extracts,” Sci. Pharm., vol. 78, no. 3, pp. 483-492, 2010, doi: https://doi.org/10.3797/scipharm.1004-23

A.-H. Lo, Y.-C. Liang, S.-Y. Lin-Shiau, C.-T. Ho, and J.-K. Lin, “Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages,” Carcinogenesis, vol. 23, no. 6, pp. 983-991, Jun. 2002, doi: https://doi.org/10.1093/carcin/23.6.983

F. A. Khalafalla, F. H. M. Ali, and A.-R. H. A. Hassan, “Quality improvement and shelf-life extension of refrigerated Nile tilapia (Oreochromis niloticus) fillets using natural herbs,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 4, no. 1, pp. 33-40, Mar. 2015, doi: https://doi.org/10.1016/j.bjbas.2015.02.005

A. R. Gouveia, M. Alves, J. A. Silva, y C. Saraiva, “The Antimicrobial Effect of Rosemary and Thyme Essential Oils Against Listeria Monocytogenes in Sous Vide Cook-chill Beef During Storage,” Procedia Food Sci., vol. 7, pp. 173-176, 2016, doi: https://doi.org/10.1016/j.profoo.2016.10.001

M. Radaelli, B. P. da Silva, L. Weidlich, L. Hoehne, A. Flach, L. A. Mendonça Alves da Costa, E. M. Ethur, “Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens,” Braz. J. Microbiol., vol. 47, no. 2, pp. 424-430, Apr. 2016, doi: https://doi.org/10.1016/j.bjm.2015.10.001

S. Adhikary and N. Dasgupta, “Role of secondary metabolites in plant homeostasis during biotic stress,” Biocatal. Agric. Biotechnol., vol. 50, art. no. 102712, Jul. 2023, doi: https://doi.org/10.1016/j.bcab.2023.102712

N. M. Vazquez, S. Moreno, and E. M. Galván, “Exposure of multidrug-resistant Klebsiella pneumoniae biofilms to 1,8-cineole leads to bacterial cell death and biomass disruption,” Biofilm, vol. 4, art. no. 100085, Dec. 2022, doi: https://doi.org/10.1016/j.bioflm.2022.100085

I. Oualdi, F. Brahmi, O. Mokhtari, S. Abdellaoui, A. Tahani, and A. Oussaid, “Rosmarinus officinalis from Morocco, Italy and France: Insight into chemical compositions and biological properties,” Mater. Today Proc., vol. 45, pp. 7706-7710, 2021, doi: https://doi.org/10.1016/j.matpr.2021.03.333

W. Wang, N. Wu, Y. G. Zu, and Y. J. Fu, “Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components,” Food Chem., vol. 108, no. 3, pp. 1019-1022, Jun. 2008, doi: https://doi.org/10.1016/j.foodchem.2007.11.046

C. Bai, Q. Ma, Q. Li, L. Yu, D. Zhen, M. Liu, C. Wei, “Combination of 1,8-cineole and beta-caryophyllene synergistically reverses cardiac hypertrophy in isoprenaline-induced mice and H9c2 cells,” Bioorg. Chem., vol. 124, art. no. 105823, Jul. 2022, doi: https://doi.org/10.1016/j.bioorg.2022.105823

A. Kumar, K. Dev, and A. Sourirajan, “Essential Oils of Rosmarinus officinalis L., Cymbopogon citratus (DC.) Stapf., and the phyto-compounds, delta-carene and alpha-pinene mediate cell cycle arrest at G2/M transition in budding yeast Saccharomyces cerevisiae,” South Afr. J. Bot., vol. 141, pp. 296-305, Sep. 2021, doi: https://doi.org/10.1016/j.sajb.2021.05.008

M. Ghavam, “GC-MS analysis and antimicrobial activities of a Rosmarinus officinalis L. essential oil from Kashan Region (Iran),” Biochem. Syst. Ecol., vol. 105, art. no. 104507, Dec. 2022, doi: https://doi.org/10.1016/j.bse.2022.104507

M. M. Karimkhani, M. Nasrollahzadeh, M. Maham, A. Jamshidi, M. S. Kharazmi, D. Dehnad, S. M. Jafari, “Extraction and purification of α-pinene; a comprehensive review,” Crit. Rev. Food Sci. Nutr., pp. 1-26, Nov. 2022, doi: https://doi.org/10.1080/10408398.2022.2140331

N. Boukraa, S. Ladjel, W. Benlamoudi, M. B. Goudjil, M. Berrekbia, and A. Eddoud, “Insecticidal and repellent activities of Artemisia herba alba Asso, Juniperus phoenicea L and Rosmarinus officinalis L essential oils in synergized combinations against adults of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae),” Biocatal. Agric. Biotechnol., vol. 45, art. no. 102513, Oct. 2022, doi: https://doi.org/10.1016/j.bcab.2022.102513

M. Ben Abada, S. Haouel Hamdi, C. Masseoud, H. Jroud, E. Bousshih, and J. Mediouni Ben Jemâa, “Variations in chemotypes patterns of Tunisian Rosmarinus officinalis essential oils and applications for controlling the date moth Ectomyelois ceratoniae (Pyralidae),” South Afr. J. Bot., vol. 128, pp. 18-27, Jan. 2020, doi: https://doi.org/10.1016/j.sajb.2019.10.010

P. Satyal, T. H. Jones, E. M. Lopez, R. L. McFeeters, et al., “Chemotypic Characterization and Biological Activity of Rosmarinus officinalis,” Foods, vol. 6, no. 3, art. no. 20, Mar. 2017, doi: https://doi.org/10.3390/foods6030020

H. Bitterling, P. Lorenz, W. Vetter, D. R. Kammerer, and F. C. Stintzing, “Photo-protective effects of selected furocoumarins on β-pinene, R-(+)-limonene and γ-terpinene upon UV-A irradiation,” J. Photochem. Photobiol. Chem., vol. 424, art. no. 113623, Feb. 2022, doi: https://doi.org/10.1016/j.jphotochem.2021.113623

A. M. Eid, N. Jaradat, L. Issa, A. Abu-Hasan et al., “Evaluation of anticancer, antimicrobial, and antioxidant activities of rosemary (Rosmarinus Officinalis) essential oil and its Nanoemulgel,” Eur. J. Integr. Med., vol. 55, art. no. 102175, Oct. 2022, doi: https://doi.org/10.1016/j.eujim.2022.102175

B. Amina, B. Soumeya, B. Salim, B. Mahieddine, et al., “Chemical profiling, antioxidant, enzyme inhibitory and in silico modeling of Rosmarinus officinalis L. and Artemisia herba alba Asso. essential oils from Algeria,” South Afr. J. Bot., vol. 147, pp. 501-510, Jul. 2022, doi: https://doi.org/10.1016/j.sajb.2022.02.012

M. Saied, K. Ali, and A. Mosayeb, “Rosemary (Rosmarinus officinalis L.) essential oil alleviates testis failure induced by Etoposide in male rats,” Tissue Cell, vol. 81, art. no. 102016, Apr. 2023, doi: https://doi.org/10.1016/j.tice.2023.102016

Z. Zhao, Y. Sun, and X. Ruan, “Bornyl acetate: A promising agent in phytomedicine for inflammation and immune modulation,” Phytomedicine, vol. 114, art. no. 154781, Jun. 2023, doi: https://doi.org/10.1016/j.phymed.2023.154781

R. Aitfella Lahlou, M. Bounechada, A. Mohammedi, L. R. Silva, and G. Alves, “Dietary use of Rosmarinus officinalis and Thymus vulgaris as anticoccidial alternatives in poultry,” Anim. Feed Sci. Technol., vol. 273, art. no. 114826, Mar. 2021, doi: https://doi.org/10.1016/j.anifeedsci.2021.114826

E. Mahajan, S. Singh, Diksha, S. Kaur, and S. K. Sohal, “The genotoxic, cytotoxic and growth regulatory effects of plant secondary metabolite β-caryophyllene on polyphagous pest Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae),” Toxicon, vol. 219, art. no. 106930, Nov. 2022, doi: https://doi.org/10.1016/j.toxicon.2022.09.016

A. Balahbib, N. El Omari, N. El Hachlafi, F. Lakhdar, “Health beneficial and pharmacological properties of p-cymene,” Food Chem. Toxicol., vol. 153, art. no. 112259, Jul. 2021, doi: https://doi.org/10.1016/j.fct.2021.112259

J. Fabbri, M. A. Maggiore, P. E. Pensel, C. M. Albani, G. M. Denegri, and M. C. Elissondo, “Could beta-myrcene be an alternative to albendazole for the treatment of experimental cystic echinococcosis?,” Acta Trop., vol. 187, pp. 5-12, Nov. 2018, doi: https://doi.org/10.1016/j.actatropica.2018.07.013

T. D. Alexandrino, T. D. M. Medeiros, A. L. T. G. Ruiz, D. C. Favaro, G. M. Pastore, and J. L. Bicas, “Structural properties and evaluation of the antiproliferative activity of limonene‐1,2‐diol obtained by the fungal biotransformation of R ‐(+)‐ and S ‐(−)‐limonene,” Chirality, vol. 34, no. 6, pp. 887-893, Jun. 2022, doi: https://doi.org/10.1002/chir.23439

Y. Guo, A. Baschieri, R. Amorati, and L. Valgimigli, “Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals,” Food Chem., vol. 345, art. no. 128468, May 2021, doi: https://doi.org/10.1016/j.foodchem.2020.128468

A. Mouahid, C. Dufour, and E. Badens, “Supercritical CO2 extraction from endemic Corsican plants; comparison of oil composition and extraction yield with hydrodistillation method,” J. CO2 Util., vol. 20, pp. 263-273, Jul. 2017, doi: https://doi.org/10.1016/j.jcou.2017.06.003

M. Mueller, S. Hobiger, and A. Jungbauer, “Anti-inflammatory activity of extracts from fruits, herbs and spices,” Food Chem., vol. 122, no. 4, pp. 987-996, Oct. 2010, doi: https://doi.org/10.1016/j.foodchem.2010.03.041

D. Poeckel, C. Greiner, M. Verhoff, O. Rau et al., “Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress pro-inflammatory responses of stimulated human polymorphonuclear leukocytes,” Biochem. Pharmacol., vol. 76, no. 1, pp. 91-97, Jul. 2008, doi: https://doi.org/10.1016/j.bcp.2008.04.013

S.-Y. Yang, C.-O. Hong, G. P. Lee, C.-T. Kim, and K.-W. Lee, “The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage,” Food Chem. Toxicol., vol. 55, pp. 92-99, May 2013, doi: https://doi.org/10.1016/j.fct.2012.12.042

W. Yeddes, H. Majdi, H. Gadhoumi, T. G. Affes, S. N. Mohamed, W. A. Wannes, M. Saidani-Tounsi, “Optimizing Ethanol Extraction of Rosemary Leaves and Their Biological Evaluations,” J. Explor. Res. Pharmacol., vol. 7, no. 2, pp. 85-94, Jun. 2022, doi: https://dx.doi.org/10.14218/JERP.2022.00002

Y. Zhang, J. P. Smuts, E. Dodbiba, R. Rangarajan, J. C. Lang, and D. W. Armstrong, “Degradation Study of Carnosic Acid, Carnosol, Rosmarinic Acid, and Rosemary Extract (Rosmarinus officinalis L.) Assessed Using HPLC,” J. Agric. Food Chem., vol. 60, no. 36, pp. 9305-9314, Sep. 2012, doi: https://doi.org/10.1021/jf302179c

M. S. Afonso, A. M. de o Silva, E. B. Carvalho, D. P. Rivelli, et al., “Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats,” Nutr. Metab., vol. 10, no. 1, art. no. 19, Feb. 2013, doi: https://doi.org/10.1186/1743-7075-10-19

J. M. Andrade, C. Faustino, C. Garcia, D. Ladeiras, C. P. Reis, and P. Rijo, “Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity,” Future Sci. OA, vol. 4, no. 4, art. no. FSO283, Apr. 2018, doi: https://doi.org/10.4155/fsoa-2017-0124

S.-Y. Park, “Neuroprotective and Neurotrophic Effects of Isorosmanol,” Z. Naturforsch. C. J. Biosci., vol. 64, no. 5-6, pp. 395-398, Jun. 2009, doi: https://doi.org/10.1515/znc-2009-5-616

Y. Wang, Y. Wu, A. Wang, A. Wang, et al., “An olive-derived elenolic acid stimulates hormone release from L-cells and exerts potent beneficial metabolic effects in obese diabetic mice,” Front. Nutr., vol. 9, art. no. 1051452, Nov. 2022, doi: https://doi.org/10.3389/fnut.2022.1051452

L. Li, Z. Pan, D. Ning, and Y. Fu, “Rosmanol and Carnosol Synergistically Alleviate Rheumatoid Arthritis through Inhibiting TLR4/NF-κB/MAPK Pathway,” Molecules, vol. 27, no. 1, art. no. 78, Dic. 2021, doi: https://doi.org/10.3390/molecules27010078

F. Farhadi, V. Baradaran Rahimi, N. Mohamadi, and V. R. Askari, “Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases,” Biofactors, Dic. 2022, doi: https://doi.org/10.1002/biof.1929

H. Feng, Y. Hu, S. Zhou, and Y. Lu, “Farnesoid X receptor contributes to oleanolic acid-induced cholestatic liver injury in mice,” J. Appl. Toxicol., vol. 42, no. 8, pp. 1323-1336, Aug. 2022, doi: https://doi.org/10.1002/jat.4298

H. Kheiria, A. Mounir, Q. María, J. María José, and S. Bouzid, “Total Phenolic Content and Polyphenolic Profile of Tunisian Rosemary (Rosmarinus officinalis L.) Residues,” in Natural Drugs from Plants, H. A. El-Shemy, Ed., IntechOpen, 2021, ch. 9, doi: https://doi.org/10.5772/intechopen.97762

M. Romo Vaquero, M.-J. Yáñez-Gascón, R. García Villalba, M. Larrrosa, et al., “Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid,” PLoS One, vol. 7, no. 6, art. no. e39773, Jun. 2012, doi: https://doi.org/10.1371/journal.pone.0039773

H. Lou, H. Li, S. Zhang, H. Lu, and Q. Chen, “A Review on Preparation of Betulinic Acid and Its Biological Activities,” Molecules., vol. 26, no. 18, art. no. 5583, Sep. 2021, doi: https://doi.org/10.3390/molecules26185583

M. Aswathy, A. Vijayan, U. D. Daimary, S. Girisa, K. V. Radhakrishnan, and A. B. Kunnumakkara, “Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives,” J. Biochem. Mol. Toxicol., vol. 36, no. 12, art. no. e23206, Dec. 2022, doi: https://doi.org/10.1002/jbt.23206

P. Singh, Y. Arif, A. Bajguz, and S. Hayat, “The role of quercetin in plants,” Plant Physiol. Biochem., vol. 166, pp. 10-19, Sep. 2021, doi: https://doi.org/10.1016/j.plaphy.2021.05.023

Z. Cui, X. Zhao, F. K. Amevor, X. Du, et al., “Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism,” Front. Immunol., vol. 13, art. 943321, 2022, doi: https://doi.org/10.3389/fimmu.2022.943321

A. Gupta, A. G. Atanasov, Y. Li, N. Kumar, and A. Bishayee, “Chlorogenic acid for cancer prevention and therapy: Current status on efficacy and mechanisms of action,” Pharmacol. Res., vol. 186, art. no. 106505, Dec. 2022, doi: https://doi.org/10.1016/j.phrs.2022.106505

L. Wang, X. Pan, L. Jiang, Y. Chu, et al., “The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review,” Front. Nutr., vol. 9, art. no. 943911, Jun. 2022, doi: https://doi.org/10.3389/fnut.2022.943911

F. Qoorchi Moheb Seraj, N. Heravi-Daz, A. Soltani, S. S. Ahmadi, et al., “Thymol has anticancer effects in U-87 human malignant glioblastoma cells,” Mol. Biol. Rep., vol. 49, no. 10, pp. 9623-9632, Oct. 2022, doi: https://doi.org/10.1007/s11033-022-07867-3

V. Sharma, D. Kumar, K. Dev, and A. Sourirajan, “Anticancer activity of essential oils: Cell cycle perspective,” South Afr. J. Bot., vol. 157, pp. 641-647, Jun. 2023, doi: https://doi.org/10.1016/j.sajb.2023.04.031

J. Sharifi-Rad, A. Ozleyen, T. Boyunegmez Tumer, C. Oluwaseun Adetunji, et al., “Natural Products and Synthetic Analogs as a Source of Antitumor Drugs,” Biomolecules, vol. 9, no. 11, art. no. 679, Nov. 2019, doi: https://doi.org/10.3390/biom9110679

M. V. Barni, M. J. Carlini, E. G. Cafferata, L. Puricelli, and S. Moreno, “Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells,” Oncol. Rep., vol. 27, no. 4, pp. 1041-1048, Apr. 2012, doi: https://doi.org/10.3892/or.2012.1630

J. D. Perales Flores M. J. Verde-Star, J. E. Viveros Valdéz, M. P. Barrón-González, R. A. Garza-Padrón, V. E. Aguirre Arzola, and R. G. Rodriguez Garza, “Actividad antioxidante, tóxica y antimicrobiana de Rosmarinus officinalis, Ruta graveolens y Juglans regia contra Helicobacter pylori,” Biotecnia, vol. 25, no. 1, pp. 88-93, Nov. 2022, doi: https://doi.org/10.18633/biotecnia.v25i1.1773

N. Botsoglou, I. Taitzoglou, I. Zervos, E. Botsoglou, M. Tsantarliotou, and P. S. Chatzopoulou, “Potential of long-term dietary administration of rosemary in improving the antioxidant status of rat tissues following carbon tetrachloride intoxication,” Food Chem. Toxicol., vol. 48, no. 3, pp. 944-950, Mar. 2010, doi: https://doi.org/10.1016/j.fct.2010.01.004

P. P. Ferrer-Gallego, R. Ferrer-Gallego, R. Roselló, J. B. Peris, A. Guillén, J. Gómez, and E. Laguna, “A new subspecies of Rosmarinus officinalis (Lamiaceae) from the eastern sector of the Iberian Peninsula,” Phytotaxa, vol. 172, no. 2, art. no. 61, Jun. 2014, doi: https://doi.org/10.11646/phytotaxa.172.2.1

A. I. Hopia, S.-W. Huang, K. Schwarz, J. B. German, and E. N. Frankel, “Effect of Different Lipid Systems on Antioxidant Activity of Rosemary Constituents Carnosol and Carnosic Acid with and without α-Tocopherol,” J. Agric. Food Chem., vol. 44, no. 8, pp. 2030-2036, Jan. 1996, doi: https://doi.org/10.1021/jf950777p

A. Wollinger, É. Perrin, J. Chahboun, V. Jeannot, D. Touraud, and W. Kunz, “Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays,” Comptes Rendus Chim., vol. 19, no. 6, pp. 754-765, Jun. 2016, doi: https://doi.org/10.1016/j.crci.2015.12.014

W. Wang, N. Wu, Y. G. Zu, and Y. J. Fu, “Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components,” Food Chem., vol. 108, no. 3, pp. 1019-1022, Jun. 2008, doi: https://doi.org/10.1016/j.foodchem.2007.11.046

F. V. B. Petrolini, R. Lucarini, M. G. de Souza, R. H. Pires, W. R. Cunha, and C. H. Martins, “Evaluation of the antibacterial potential of Petroselinum crispum and Rosmarinus officinalis against bacteria that cause urinary tract infections,” Braz. J. Microbiol., vol. 44, no. 3, pp. 829-834, Sep. 2013, doi: https://doi.org/10.1590/s1517-83822013005000061

R. Hamidpour, S. Hamidpour, and G. Elias, “Rosmarinus Officinalis (Rosemary): A Novel Therapeutic Agent for Antioxidant, Antimicrobial, Anticancer, Antidiabetic, Antidepressant, Neuroprotective, Anti-Inflammatory, and Anti-Obesity Treatment,” Biomed. J. Sci. Tech. Res., vol. 1, no. 4, Sep. 2017, doi: http://dx.doi.org/10.26717/BJSTR.2017.01.000371

E. Flores-Villa, A. Sáenz-Galindo, A. O. Castañeda-Facio, and R. I. Narro-Céspedes, “Romero (Rosmarinus officinalis L.): su origen, importancia y generalidades de sus metabolitos secundarios,” TIP, vol. 23, art. no. e20200266, Nov. 2020, doi: https://doi.org/10.22201/fesz.23958723e.2020.0.266

H. I. Castaño P., G. Ciro G., J. E. Zapata M., and S. L. Jiménez R., “Bactericidal activity of ethanolic leaf extract and leaf essential oil of Rosmarinus officinalis L. on some foodborne bacteria,” Vitae, vol. 17, no. 2, pp. 149-154, Jul. 2010, doi: https://doi.org/10.17533/udea.vitae.6334

X. K. Solano Solano, M. I. Zambrano Gutiérrez, “Inhibición del Streptococcus mutans, mediante el uso de extracto acuoso y oleoso de Rosmarinus officinalis “romero”,” Rev. Odontol., vol. 19, no. 2, pp. 29-34, 2016. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=5815882

M. A. Montero-Recalde, J. A. Martinez-Jimenéz, D. F. Avilés-Esquivel, E. L. Valle-Velástegui, and N. D. P. Pazmiño-Miranda, “Efecto antimicrobiano del extracto crudo oleoso de Rosmarinus Officinalis sobre cepa de Escherichia coli,” J. Selva Andina Biosphere, vol. 5, no. 2, pp. 168-175, Nov. 2017, doi: https://doi.org/10.36610/j.jsab.2017.050200168

N. R. Farnsworth, O. Akerele, A. S. Bingel, D. D. Soejarto, and Z. Guo, “Medicinal plants in therapy,” Bull. World Health Organ., vol. 63, no. 6, pp. 965-981, 1985. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536466/pdf/bullwho00089-0002.pdf

O. V. Filiptsova, L. V. Gazzavi-Rogozina, I. A. Timoshyna, O. I. Naboka, Ye. V. Dyomina, and A. V. Ochkur, “The essential oil of rosemary and its effect on the human image and numerical short-term memory,” Egypt. J. Basic Appl. Sci., vol. 4, no. 2, pp. 107-111, Jun. 2017, doi: https://doi.org/10.1016/j.ejbas.2017.04.002

M. A. El-Desouky, M. H. Mahmoud, B. Y. Riad, and Y. M. Taha, “Nephroprotective effect of green tea, rosmarinic acid and rosemary on N-diethylnitrosamine initiated and ferric nitrilotriacetate promoted acute renal toxicity in Wistar rats,” Interdiscip. Toxicol., vol. 12, no. 2, pp. 98-110, Oct. 2019, doi: https://doi.org/10.2478/intox-2019-0012

S. Makaremi, A. Ganji, A. Ghazavi, and G. Mosayebi, “Inhibition of tumor growth in CT-26 colorectal cancer-bearing mice with alcoholic extracts of Curcuma longa and Rosmarinus officinalis,” Gene Rep., vol. 22, art. no. 101006, Mar. 2021, doi: https://doi.org/10.1016/j.genrep.2020.101006

L. M. Muñoz Centeno, “Plantas medicinales españolas. Rosmarinus officinalis L. (Lamiaceae) (romero),” Stud. Bot., vol. 21, 2002. [Online]. Available: https://revistas.usal.es/historico/index.php/0211-9714/article/view/6111

I. Borrás Linares, D. Arráez-Román, M. Herrero, E. Ibáñez, A. Segura-Carretero, and A. Fernández-Gutiérrez, “Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry,” J. Chromatogr. A, vol. 1218, no. 42, pp. 7682-7690, Oct. 2011, doi: https://doi.org/10.1016/j.chroma.2011.07.021

M. Kumar, M. D. Barbhai, S. Puranik, Radha, et al., “Combination of green extraction techniques and smart solvents for bioactives recovery,” TrAC Trends Anal. Chem., vol. 169, art. no. 117286, Dec. 2023, doi: https://doi.org/10.1016/j.trac.2023.117286

S. Oubannin, L. Bijla, M. N. Ahmed, M. Ibourki, et al., “Recent advances in the extraction of bioactive compounds from plant matrices and their use as potential antioxidants for vegetable oils enrichment,” J. Food Compos. Anal., vol. 128, art. no. 105995, Apr. 2024, doi: https://doi.org/10.1016/j.jfca.2024.105995

F. Chemat, M. A. Vian, A.-S. Fabiano-Tixier, M. Nutrizio, et al., “A review of sustainable and intensified techniques for extraction of food and natural products,” Green Chem., vol. 22, no. 8, pp. 2325-2353, 2020, doi: https://doi.org/10.1039/C9GC03878G

P. R. More, A. R. Jambrak, and S. S. Arya, “Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization,” Trends Food Sci. Technol., vol. 128, pp. 296-315, Oct. 2022, doi: https://doi.org/10.1016/j.tifs.2022.08.016

W. T. Richards and A. L. Loomis, “The chemical effects of high frequency sound waves I. A preliminary survey,” J. Am. Chem. Soc., vol. 49, no. 12, pp. 3086-3100, Dec. 1927, doi: https://doi.org/10.1021/ja01411a015

K. S. Suslick, “The Chemical Effects of Ultrasound,” Sci. Am., vol. 260, no. 2, pp. 80-86, feb. 1989, doi: https://doi.org/10.1038/scientificamerican0289-80

N. Pokhrel, P. K. Vabbina, and N. Pala, “Sonochemistry: Science and Engineering,” Ultrason. Sonochem., vol. 29, pp. 104-128, Mar. 2016, doi: https://doi.org/10.1016/j.ultsonch.2015.07.023

L. E. Robles-Ozuna and L. A. Ochoa-Martínez, “Ultrasonido y sus aplicaciones en el procesamiento de alimentos,” vol. 13, no. 2, pp. 109-122, 2012. [Online]. Available: https://www.redalyc.org/articulo.oa?id=81325441002

M. Islam, S. Malakar, M. V. Rao, N. Kumar, and J. K. Sahu, “Recent advancement in ultrasound-assisted novel technologies for the extraction of bioactive compounds from herbal plants: a review,” Food Sci. Biotechnol., vol. 32, no. 13, pp. 1763-1782, Nov. 2023, doi: https://doi.org/10.1007/s10068-023-01346-6

D. Y. Hoo, Z. L. Low, D. Y. S. Low, S. Y. Tang, S. Manickam, K. W. Tan, Z. H. Ban, “Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose,” Ultrason. Sonochem., vol. 90, art. no. 106176, Nov. 2022, doi: https://doi.org/10.1016/j.ultsonch.2022.106176

M. Ramić, S. Vidović, Z. Zeković, J. Vladić, A. Cvejin, and B. Pavlić, “Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory,” Ultrason. Sonochem., vol. 23, pp. 360-368, Mar. 2015, doi: https://doi.org/10.1016/j.ultsonch.2014.10.002

N. A. Al-Dhabi, K. Ponmurugan, and P. Maran Jeganathan, “Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds,” Ultrason. Sonochem., vol. 34, pp. 206-213, Jan. 2017, doi: https://doi.org/10.1016/j.ultsonch.2016.05.005

K. Kumar, S. Srivastav, and V. S. Sharanagat, “Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review,” Ultrason. Sonochem., vol. 70, art. no. 105325, Jan. 2021, doi: https://doi.org/10.1016/j.ultsonch.2020.105325

C. Wen, J. Zhang, H. Zhang, C. S. Dzah, et al., “Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review,” Ultrason. Sonochem., vol. 48, pp. 538-549, Nov. 2018, doi: https://doi.org/10.1016/j.ultsonch.2018.07.018

C. S. Dzah, Y. Duan, H. Zhang, C. Wen, J. Zhang, G. Chen, H. Ma, “The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review,” Food Biosci., vol. 35, art. no. 100547, Jun. 2020, doi: https://doi.org/10.1016/j.fbio.2020.100547

I. M. Yusoff, Z. Mat Taher, Z. Rahmat, and L. S. Chua, “A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins,” Food Res. Int., vol. 157, art. no. 111268, Jul. 2022, doi: https://doi.org/10.1016/j.foodres.2022.111268

A. C. Feihrmann, N. M. da Silva, A. R. de Marins, M. Antônio Matiucci, et al., “Ultrasound-assisted extraction and encapsulation by spray drying of bioactive compounds from Tradescantia zebrina leaves,” Food Chem. Adv., vol. 4, art. no. 100621, Jun. 2024, doi: https://doi.org/10.1016/j.focha.2024.100621

R. Biswas, A. Sarkar, M. Alam, M. Roy, and M. M. Mahdi Hasan, “Microwave and ultrasound-assisted extraction of bioactive compounds from Papaya: A sustainable green process,” Ultrason. Sonochem., vol. 101, art. no. 106677, Dec. 2023, doi: https://doi.org/10.1016/j.ultsonch.2023.106677

A. Olfat, T. Mostaghim, S. Shahriari, and M. Salehifar, “Extraction of bioactive compounds of Hypnea flagelliformis by ultrasound-assisted extraction coupled with natural deep eutectic solvent and enzyme inhibitory activity,” Algal Res., vol. 78, art. no. 103388, Mar. 2024, doi: https://doi.org/10.1016/j.algal.2023.103388

A. Palma, M. Ruiz-Montoya, M. J. Díaz, I. Giráldez, and E. Morales, “Optimization of bioactive compounds by ultrasound extraction and gas chromatography - mass spectrometry in fast-growing leaves,” Microchem. J., vol. 193, art. no. 109231, Oct. 2023, doi: https://doi.org/10.1016/j.microc.2023.109231

K. S. L. Miki, A. P. Dresch, M. Cavali, A. P. da Silva, et al., “Influence of drying methods in the ultrasound-assisted extraction of bioactive compounds from Byrsonima crassifolia to evaluate their potential antitumor activity,” Food Humanity, vol. 2, art. no. 100242, May 2024, doi: https://doi.org/10.1016/j.foohum.2024.100242

P. Petchimuthu, G. B. Sumanth, S. Kunjiappan, S. Kannan, S. R. K. Pandian, and K. Sundar, “Green extraction and optimization of bioactive compounds from Solanum torvum Swartz. using ultrasound-aided solvent extraction method through RSM, ANFIS and machine learning algorithm,” Sustain. Chem. Pharm., vol. 36, art. no. 101323, Dec. 2023, doi: https://doi.org/10.1016/j.scp.2023.101323

H. Koraqi, A. Trajkovska Petkoska, W. Khalid, N. Kumar, and S. Pareek, “Optimization of experimental conditions for bioactive compounds recovery from raspberry fruits (Rubus idaeus L.) by using combinations of ultrasound-assisted extraction and deep eutectic solvents,” Appl. Food Res., vol. 3, no. 2, art. no. 100346, Dec. 2023, doi: https://doi.org/10.1016/j.afres.2023.100346

S. Albu, E. Joyce, L. Paniwnyk, J. P. Lorimer, and T. J. Mason, “Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry,” en Ultrason. Sonochem., vol. 11, no. 3-4, pp. 261-265, May 2004, doi: https://doi.org/10.1016/j.ultsonch.2004.01.015

L. Paniwnyk, H. Cai, S. Albu, T. J. Mason, and R. Cole, “The enhancement and scale up of the extraction of anti-oxidants from Rosmarinus officinalis using ultrasound,” Ultrason. Sonochem., vol. 16, no. 2, pp. 287-292, Feb. 2009, doi: https://doi.org/10.1016/j.ultsonch.2008.06.007

M. Nicolai, P. Pereira, R. F. Vitor, C. P. Reis, A. Roberto, and P. Rijo, “Antioxidant activity and rosmarinic acid content of ultrasound-assisted ethanolic extracts of medicinal plants,” Meas. J. Int. Meas. Confed., vol. 89, pp. 328-332, Jul. 2016, doi: https://doi.org/10.1016/j.measurement.2016.04.033

X. Zhong, X. Wang, N. Zhou, J. Li, et al., “Chemical characterization of the polar antibacterial fraction of the ethanol extract from Rosmarinus officinalis,” Food Chem., vol. 344, art. no. 128674, May 2021, doi: https://doi.org/10.1016/j.foodchem.2020.128674

R. S. Pizani, J. Viganó, L. S. Contieri, M. M. Strieder, et al., “New selective and sustainable ultrasound-assisted extraction procedure to recover carnosic and rosmarinic acids from Rosmarinus officinalis by sequential use of bio-based solvents,” Food Chem., vol. 435, art. no. 137540, Mar. 2024, doi: https://doi.org/10.1016/j.foodchem.2023.137540

G. Chisha, C. Li, L. Xiao, B. Wang, Y. Chen, and Z. Cui, “Multiscale mechanism exploration and experimental optimization for rosmarinic acid extraction from Rosmarinus officinalis using natural deep eutectic solvents,” Ind. Crops Prod., vol. 188, art. no. 115637, Nov. 2022, doi: https://doi.org/10.1016/j.indcrop.2022.115637

A. Ali, B. L. Chua, Y. H. Chow, and C. H. Chong, “Development and characterisation of novel terpenoid-based hydrophobic deep eutectic solvents for sustainable extraction of bioactive antioxidants from Rosmarinus officinalis L,” J. Mol. Liq., vol. 388, art. no. 122792, Oct. 2023, doi: https://doi.org/10.1016/j.molliq.2023.122792

S. S. Ayyildiz, E. Pelvan, and B. Karadeniz, “Optimization of accelerated solvent extraction, ultrasound assisted and supercritical fluid extraction to obtain carnosol, carnosic acid and rosmarinic acid from rosemary,” Sustain. Chem. Pharm., vol. 37, art. no. 101422, Feb. 2024, doi: https://doi.org/10.1016/j.scp.2023.101422

C. Caleja, L. Barros, M. A. Prieto, M. F. Barreiro, M. B. P. P. Oliveira, and I. C. F. R. Ferreira, “Extraction of rosmarinic acid from Melissa officinalis L. by heat-, microwave- and ultrasound-assisted extraction techniques: A comparative study through response surface analysis,” Sep. Purif. Technol., vol. 186, pp. 297-308, Oct. 2017, doi: https://doi.org/10.1016/j.seppur.2017.06.029

M. Jacotet-Navarro, N. Rombaut, A.-S. Fabiano-Tixier, M. Danguien, A. Bily, and F. Chemat, “Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary,” Ultrason. Sonochem., vol. 27, pp. 102-109, Nov. 2015, doi: https://doi.org/10.1016/j.ultsonch.2015.05.006

M. Bellumori, M. Innocenti, A. Binello, L. Boffa, N. Mulinacci, and G. Cravotto, “Selective recovery of rosmarinic and carnosic acids from rosemary leaves under ultrasound- and microwave-assisted extraction procedures,” Comptes Rendus Chim., vol. 19, no. 6, pp. 699-706, Apr. 2016, doi: https://doi.org/10.1016/j.crci.2015.12.013

D. Tungmunnithum, L. Garros, S. Drouet, S. Renouard, E. Lainé, and C. Hano, “Green Ultrasound Assisted Extraction of trans Rosmarinic Acid from Plectranthus scutellarioides (L.) R.Br. Leaves,” Plants, vol. 8, no. 3, art. no. 50, Feb. 2019, doi: https://doi.org/10.3390/plants8030050

G. Zu, R. Zhang, L. Yang, C. Ma, Y. Zu, W. Wang, C. Zhao, “Ultrasound-Assisted Extraction of Carnosic Acid and Rosmarinic Acid Using Ionic Liquid Solution from Rosmarinus officinalis,” Int. J. Mol. Sci., vol. 13, no. 9, pp. 11027-11043, Sep. 2012, doi: https://doi.org/10.3390/ijms130911027

A. M. Hrebień-Filisińska and G. Tokarczyk, “The Use of Ultrasound-Assisted Maceration for the Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Directly into Fish Oil,” Molecules, vol. 28, no. 16, art. no. 6094, Aug. 2023, doi: https://doi.org/10.3390/molecules28166094

N. Dhouibi, S. Manuguerra, R. Arena, C. M. Messina, et al., “Impact of the Extraction Method on the Chemical Composition and Antioxidant Potency of Rosmarinus officinalis L. Extracts,” Metabolites, vol. 13, no. 2, art. no. 290, Feb. 2023, doi: https://doi.org/10.3390/metabo13020290

Downloads

Published

2024-05-16

How to Cite

Cedillo-Portillo, J. J., Villastrigo-López, W. Y., Castañeda-Facio, A. O., Esparza-González, S. C., Múzquiz-Ramos, E. M., & Sáenz-Galindo, A. (2024). Salvia rosmarinus Spenn. Main Applications and Ultrasonic Extraction of Secondary Metabolites: a General Review . Revista Mexicana De Ingenieria Biomedica, 45(2), 35–61. https://doi.org/10.17488/RMIB.45.2.3

Issue

Section

Review Article

Dimensions Citation