Rehabilitation Exoskeletons: a Systematic Literature Review




analysis, diagnosis, exoskeletons, mobility, rehabilitation


The accelerated evolution of technology in the last decade has enabled breakthroughs in fields of science such as medicine, robotics, bionics and rehabilitation by integrating knowledge and techniques from these areas.

Rehabilitation exoskeletons are examples of multidisciplinary integration in the development of physiotherapeutic intervention tools that have shown significant results in patients with neurological diseases.

This systematic literature review presents the advances, developments and characteristics of these devices and their current situation, specifically those that have the greatest impact on their co-citation and co-occurrence so that the works integrated into the research are verifiable and reliable. This is done through the implementation of a methodology for the elaboration of the state of the art on the subject of rehabilitation exoskeletons, based on the implementation of scientific databases, systematised digital bibliometric tools and their systemic integration.

The scientific literature on rehabilitation exoskeletons was compiled from papers published between January 2014 and 30 November 2023, which were retrieved from the Web of Science. The first stage was to define the inclusion and exclusion criteria in order to limit the search within the scientific database, and the second stage was to process the information and works obtained in order to process them using the CiteSpace software, as a result of this stage, the co-occurrence analysis was obtained, a graphical network was generated and a co-citation analysis, subsequently with the data obtained from the previous stages, the PRISMA method was implemented. As a third step, the results obtained from the 1511 publications and 108,512 reference citations dealing with rehabilitation exoskeletons are presented. A discussion of the main characteristics, advances, limitations, challenges and trends of these devices is presented.


Download data is not yet available.


C. J. Yang, J. F. Zhang, Y. Chen, Y. M. Dong, and Y. Zhang, “A review of exoskeleton-type systems and their key technologies,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 222, no. 8. pp. 1599–1612, Ago. 2008, doi:

A. Rivera, “Tratamiento de rehabilitación en enfermedades neuromusculares,” LUXMED, vol. 18, no. 52, 2023, doi:

C. Camilo Rodríguez-Beltrán y D. Andrés Benavides-Cárdenas “Utility and benefits of different exoskeletons for strokes diseases,” Vis. Electron., vol. 16, no. 1, 2022. [En línea]. Disponible en:

N. Robinson, R. Mane, T. Chouhan y C. Guan, “Emerging trends in BCI-robotics for motor control and rehabilitation,” Curr. Opin. Biomed. Eng., vol. 20. art. no. 100354, 2021, doi:

B. R. Fick, J. B. Makinson, Hardiman I Prototype for Machine Augmentation of Human Strength and Endurance. USA: General Electrico Co Schenectady NY Specialty Materials Handling Products Operation, 1971.

E. Swinnen, S. Duerinck, J. P. Baeyens, R. Meeusen y E. Kerckhofs, “Effectiveness of robot-assisted gait training in persons with spinal cord injury: A systematic review,” J. Rehabil. Med., vol. 42, no. 6. pp. 520–526, 2010, doi:

A. Rodríguez-Fernández, J. Lobo-Prat y J. M. Font-Llagunes, “Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments,” J. Neuroeng. Rehabil., vol. 18, no. 1, art. no. 22, 2021. doi:

L. Zhang, F. Lin, L. Sun, y C. Chen, “Comparison of Efficacy of Lokomat and Wearable Exoskeleton-Assisted Gait Training in People With Spinal Cord Injury: A Systematic Review and Network Meta-Analysis,” Front. Neurol., vol. 13, art. no. 772660, 2022. doi:

D. Shi, W. Zhang, W. Zhang, y X. Ding, “A Review on Lower Limb Rehabilitation Exoskeleton Robots,” Chin. J. Mech. Eng., vol. 32, no. 1, art. no. 74, 2019, doi:

B. Kalita, J. Narayan, y S. K. Dwivedy, “Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review,” Int. J. Soc. Robotics, vol. 13, pp. 775–793, 2021, doi:

M. P. Pantoja-Aguilar y J. R. Salazar Garza-Treviño, “Etapas de la administración: hacia un enfoque sistémico,” Rev. Esc. Adm. Neg., no. 87, pp. 139–154, 2019, doi:

C. Chen y M. Song, “Visualizing a field of research: A methodology of systematic scientometric reviews,” PLoS One, vol. 14, no. 10, art. no. e0223994, 2019, doi:

Y. Zhang, X. Liu, X. Qiao, y Y. Fan, “Characteristics and Emerging Trends in Research on Rehabilitation Robots from 2001 to 2020: Bibliometric Study,” J. Med. Internet Res., vol. 25, art. no. e42901, 2023, doi:

M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” BMJ, vol. 372, art. no. n71, 2021, doi:

L. G. Fernández Álvarez, S. Núñez Nagy y R. Cano de la Cuerda, “Exoesqueletos portables en personas con lesión medular. Revisión sistemática,” RIECS, vol. 5, no. 1, pp. 86–105, 2020, doi:

Y. Shi, W. Dong, W. Lin, y Y. Gao, “Soft Wearable Robots: Development Status and Technical Challenges,” Sensors, vol. 22, no. 19, art. no. 7584, 2022, doi:

A. C. Picalho, E. Rosangela De Oliveira Lucas, I. S. Amorim, “AtoZ novas práticas em informação e conhecimento Lógica booleana aplicada na construção de expressões de busca Boolean logic applied to the construction of search expressions”, AtoZ, vol. 11, pp. 1-12, 2022. [En línea]. Disponible en:

C. Chen, “CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature,” J. Am. Soc. Inf. Sci. Tec., vol. 57, no. 3, pp. 359–377, 2006, doi:

S. H. Chang, T. Afzal, J. Berliner, G. E. Francisco, “Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: A pilot randomized study,” Pilot Feasibility Stud., vol. 4, art. no. 64, 2018, doi:

A. D. Delgado, M. X. Escalon, T. N. Bryce, W. Weinrauch, S. J. Suarez, A. J. Kozlowski, “Safety and feasibility of exoskeleton-assisted walking during acute/sub-acute SCI in an inpatient rehabilitation facility: A single-group preliminary study,” J. Spinal Cord Med., vol. 43, no. 5, pp. 657–666, 2020, doi:

A. S. Khan, D. C. Livingstone, C. L. Hurd, J. Duchcherer, et al., “Retraining walking over ground in a powered exoskeleton after spinal cord injury: A prospective cohort study to examine functional gains and neuroplasticity,” J. Neuroeng. Rehabil., vol. 16, no. 1, art. no. 145, 2019, doi:

P. T. P. Oliver, “Citation Indexing for Studying Science,” Nature, vol. 227, no. 5260, art. no. 870, 1970, doi:

V. A. Domínguez Ríos y M. Ángel López Santillán, “Teoría General de Sistemas, un enfoque práctico: General Systems Theory, a practical approach,” Tecnociencia Chih., vol. 10, no. 3, pp. 125-132, 2017, doi:

J. Howick, I. Chalmers, P. Glasziou, T. Greenhalgh, et al., Thornton “Explanation of the 2011 Oxford Centre for Evidence-Based Medicine (OCEBM) Levels of Evidence (Background Document).” Oxford Centre for Evidence-Based Medicine.

B. Kim y A. D. Deshpande, “An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation,” Int. J. Robot. Res., vol. 36, no. 4, pp. 414–435,2017, doi:

D. Huamanchahua, D. Rosales-Gurmendi, Y. Taza-Aquino, D. Valverde-Alania, M. Cama-Iriarte, A. Vargas-Martinez, R. A. Ramirez-Mendoza, “A robotic prosthesis as a functional upper-limb aid: An innovative review,” en 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 2021, pp. 1-8, doi:

T. Bützer, O. Lambercy, J. Arata, R. Gassert, “Fully Wearable Actuated Soft Exoskeleton for Grasping Assistance in Everyday Activities,” Soft Robot., vol. 8, no. 2, pp. 128–143, 2020, doi:

E. Trigili, S. Crea, M. Moise, A. Baldoni, et al., “Design and experimental characterization of a shoulder-elbow exoskeleton with compliant joints for post-stroke rehabilitation,” IEEE/ASME Trans. Mech., vol. 24, no. 4, pp. 1485–1496, 2020, doi:

H. Liu, J. Tao, P. Lyu, y F. Tian, “Human-robot cooperative control based on sEMG for the upper limb exoskeleton robot,” Rob. Auton. Syst., vol. 125, art. no. 103350, 2020, doi:

F. Molteni, G. Gasperini, G. Cannaviello, E. Guanziroli, “Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review,” PM R, vol. 10, no. 9, pp. S174–S188, 2018, doi:

T. Du Plessis, K. Djouani, C. Oosthuizen, “A Review of Active Hand Exoskeletons for Rehabilitation and Assistance,” Robotics, vol. 10, no. 1, art. no. 40, 2021, doi:

C. Y. Chu y R. M. Patterson, “Soft robotic devices for hand rehabilitation and assistance: A narrative review,” J. Neuroeng. Rehabil., vol. 15, no. 1, art. no. 9, 2018, doi:

R. S. Calabrò, A. Naro, M. Russo, P. Bramanti, et al., “Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial,” J. Neuroeng. Rehabil., vol. 15, no. 1, art. no. 35, 2018, doi:

T. Chen, R. Casas, P. S. Lum, “An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-Driven Differential,” IEEE Trans. Robot., vol. 35, no. 6, pp. 1464–1474, 2019, doi:

Q. A. Boser, M. R. Dawson, J. S. Schofield, G. Y. Dziwenko, J. S. Hebert, “Defining the design requirements for an assistive powered hand exoskeleton: A pilot explorative interview study and case series,” Prosthet. Orthot. Int., vol. 45, no. 2, pp. 161–169, 2021, doi:

G. Al Rezage, M. O. Tokhi, “Fuzzy PID control of lower limb exoskeleton for elderly mobility,” en 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 2016, pp. 1-6, doi:

M. S. Amiri, R. Ramli, y M. F. Ibrahim, “Hybrid design of PID controller for four DoF lower limb exoskeleton,” Appl. Math. Model., vol. 72, pp. 17–27, 2019, doi:

D. Marconi, A. Baldoni, Z. McKinney, M. Cempini, S. Crea, N. Vitiello, “A novel hand exoskeleton with series elastic actuation for modulated torque transfer,” Mechatronics, vol. 61, pp. 69–82, 2019, doi:

B. A. De la Cruz-Sánchez, M. Arias-Montiel, E. Lugo-González, “Development of Hand Exoskeleton Prototype for Assisted Rehabilitation,” en Mechanism Design for Robotics, A. Gasparetto y M. Ceccarelli, Eds., Cham, Switzerland: Springer International Publishing, 2019, pp. 378–385, doi:

E. S. Donkor, “Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life,” Stroke Res. Treat., vol. 2018, art. no. 3238165, 2018. doi:

M. H. Rahman, M. J. Rahman, O.L. Cristobal, M. Saad, J.P. Kenné, P.S. Archambault, “Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements,” Robotica, vol. 33, no. 1, pp. 19–39, 2015, doi:

F. Aggogeri, T. Mikolajczyk, J. O’Kane, “Robotics for rehabilitation of hand movement in stroke survivors,” Adv. Mech. Eng., vol. 11, no. 4, doi:

E. Ambrosini, J. Zajc, S. Ferrante, G. Ferrigno, et al., “A Hybrid Robotic System for Arm Training of Stroke Survivors: Concept and First Evaluation,” IEEE Trans. Biomed. Eng., vol. 12, pp. 3290-3300, doi:

H. Al-Fahaam, S. Davis, S. Nefti-Meziani, T. Theodoridis, “Novel soft bending actuator-based power augmentation hand exoskeleton controlled by human intention,” Intell. Serv. Robotics, vol. 11, no. 3, pp. 247–268, 2018, doi:



How to Cite

Rivera Robles, J., Bory Reyes, J., Hernández Simón , L. M. ., & Palacios Hernández, J. I. E. (2024). Rehabilitation Exoskeletons: a Systematic Literature Review. Revista Mexicana De Ingenieria Biomedica, 45(2), 78–99.



Review Article

Dimensions Citation