A Consensus Algorithm for Approximate Pattern Matching in Protein Sequences
Abstract
In bioinformatics, one of the main tools which allow scientists to find common characteristics in protein or DNA sequences of different species is the approximate matching of strings. From the computational point of view, the difficulty of approximate string matching lies in finding adequate measures to efficiently compare two strings, since, in many cases, one is interested in performing searches in real time, within large databases. In this paper we propose a novel method for approximate string matching based on a generalization of the algorithm proposed by Baeza-Yates and Perleberg in 1996 for computing the Hamming distance between two sequences. In addition, a post-processing stage which significantly reduces the number of false positives is presented. The proposed method has been evaluated in synthetic cases of random sequences, and with real cases of plant protein sequences. Results show that the proposed algorithm is highly efficient in computational terms and in specificity, especially when compared against a previously published method, which is based on the phase correlation function.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.