Predicting the Cardioactivity of Tivela stultorum clam with Digoxin Using Artificial Neural Networks
DOI:
https://doi.org/10.17488/RMIB.38.1.15Keywords:
Artificial neural networks, cardioactivity, digitalis, pharmacological response, Tivela stultorumAbstract
Artificial neural networks (ANN) are a computational method that has been widely used to solve complex problems and carry out predictions on nonlinear systems. Multilayer perceptron artificial neural networks were used to predict the physiological response that would be obtained by adding a specific concentration of digoxin to Tivela stultorum hearts, this organism is a model for testing cardiac drugs that pretends to be used in humans. The MLPANN inputs were weight, volume, length, and width of the heart, digoxin concentration and volume used for diluting digoxin, and maximum contraction, minimum contraction, filling time, and heart rate before adding digoxin, and the outputs were the maximum contraction, minimum contraction, filling time, and heart rate that would be obtained after adding digoxin to the heart. ANNs were trained, validated, and tested with the results obtained from the in vivo experiments. To choose the optimal network, the smallest square mean error value was used. Perceptrons obtained a high performance and correlation between predicted and calculated values, except in the case of the filling time output. Accurate predictions of the T. stultorum clams cardioactivity were obtained when a specific concentration of digoxin was added using ANNs with one hidden layer; this could be useful as a tool to facilitate laboratory experiments to test digoxin effects.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 D Flores, D Cervantes, A Abaroa, C Castro, R Castañeda Martínez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.