Tecnologías Emergentes como Apoyo en la Rehabilitación Propioceptiva: una Revisión del Alcance

Autores/as

DOI:

https://doi.org/10.17488/RMIB.46.1.1472

Palabras clave:

dispositivos mecánicos, exoesqueletos, redes neuronales convolucionales, terapias

Resumen

El entrenamiento propioceptivo representa cualquier intervención de la función propioceptiva que ayude a mejorar el desempeño de la función motora. Se consideran tres tipos de intervenciones: Entrenamiento de Movimiento (EM); Entrenamiento de Estimulación Somatosensorial (EES) y Entrenamiento de Reproducción de Fuerza (ERF). Este estudio analiza el alcance de las tecnologías emergentes, como los exoesqueletos, dispositivos mecánicos, Inteligencia Artificial (IA), Realidad Virtual (VR), el Internet de las Cosas (IdC) y sensores, destacando su aplicación en las terapias propioceptivas, con énfasis en el EM, EES, y ERF. Se revisaron 107 artículos publicados en revistas científicas, de los cuales 30 cumplieron los criterios de inclusión: 1) Implementación de terapia de intervención propioceptiva; 2) uso de tecnología; 3) publicación posterior al año 2019, y 4) redacción en inglés. De los estudios analizados, el 43 % empleó IA, mostrando su creciente adopción, mientras que el IdC fue la tecnología menos utilizada, con un 3 %. Se concluye que las tecnologías emergentes son fundamentales en la rehabilitación propioceptiva, al permitir el análisis de información antes y después de procedimientos quirúrgicos, la evaluación de patrones en tiempo real, y la clasificación de señales sensoriales. Además, ofrecen alternativas efectivas frente a métodos tradiciones de medición.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

A.-V. Bruyneel, “Evaluación de la propiocepción: pruebas de estatestesia y cinestesia,” EMC – Kinesiter. – Med. Fis., vol. 37, no. 4, pp. 1–11, 2016, doi: https://doi.org/10.1016/S1293-2965(16)78903-1

D. T. Tulimieri and J. A. Semrau, “Aging increases proprioceptive error for a broad range of movement speedand distance estimates in the upper limb,” Front. Hum. Neurosci., vol. 17, 2023, art. no. 1217105, doi: https://doi.org/10.3389/fnhum.2023.1217105

M. L. Alfonso Mora, et al., “Métodos de evaluación de la propiocepción en deportistas. Revisión de la Literatura,” Rev. Digi. Act. Fís. Deport., vol. 4, no. 1, pp. 69–82, 2018. doi: https://doi.org/10.31910/rdafd.v4.n1.2018.415

A. E. Khrulev, et al., “Modern Rehabilitation Technologies of Patients with Motor Disorders at an Early Rehabilitation of Stroke (Review),” Sovrem Tekhnologii Med., vol. 14, no. 6, pp. 64-78, doi: https://doi.org/10.17691/stm2022.14.6.07

A. Cherpin, et al., “A preliminary study on therelationship between proprioceptive deficits and motor functions in chronic stroke patients,” 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, Canada, 2019, pp. 465-470, doi: https://doi.org/10.1109/ICORR.2019.8779447

V. Suglia et al., “A Serious Game for the Assessment of Visuomotor Adaptation Capabilities during Locomotion Tasks Employing an Embodied Avatar in Virtual Reality,” Sensors, vol. 23, no. 11, 2023, art. no, 5017, doi: https://doi.org/10.3390/s23115017

L. Avanzino and M. Fiorio, “Proprioceptive dysfunction in focal dystonia: From experimental evidence to rehabilitation strategies,” Front. Hum. Neurosci., vol. 8, 2014, art. no. 1000, doi: https://doi.org/10.3389/fnhum.2014.01000

H. Shibasaki et al., “A new form of congenital proprioceptive sensory neuropathy associated with arthrogryposis multiplex,” J. Neurol., vol. 251, no. 11, pp. 1340–1344, 2004, doi: https://doi.org/10.1007/s00415-004-0539-4

J. E. Aman, N. Elangovan, I. L. Yeh, and J. Konczak, “The effectiveness of proprioceptive training for improving motor function: A systematic review,” Front. Hum. Neurosci., vol. 8, 2015, art. no. 1075, doi: https://doi.org/10.3389/fnhum.2014.01075

A. Vladimirovich Zakharov, et al., “Proprioception in Immersive Virtual Reality,” in Proprioception, 2021, p. 668, doi: https://doi.org/10.5772/intechopen.96316

A. Sidarta, et al., “Current clinical practice in managing somatosensory impairments and the use of technology in stroke rehabilitation,” PLoS One, vol. 17, no. 8, 2022, art. no. e0270693, doi: https://doi.org/10.1371/journal.pone.0270693

K. Valdes, K. C. Manalang, and C. Leach, “Proprioception: An evidence-based review,” J. Hand Ther., 2023, art. no. 00142-4, doi: https://doi.org/10.1016/j.jht.2023.09.015

C. Mennella, U. Maniscalco, G. De Pietro, and M. Esposito, “A deep learning system to monitor and assess rehabilitation exercises in home-based remote and unsupervised conditions,” Comput. Biol. Med., vol. 166, 2023, art. no. 107485, doi: https://doi.org/10.1016/j.compbiomed.2023.107485

P. Aleixo, T. Atalaia, J. V. Patto, and J. Abrantes, “The Effect of a Proprioceptive Exercises Programme on Disease Activity and Gait Biomechanical Parameters of Post-Menopausal Women with Rheumatoid Arthritis,” in Rheumatoid Arthritis, 2022, doi: https://doi.org/10.5772/intechopen.99462

Y. Liao, A. Vakanski, and M. Xian, “A Deep Learning Framework for Assessing Physical Rehabilitation Exercises,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 2, pp. 468–477, 2020, doi: https://doi.org/10.1109/tnsre.2020.2966249

D. Hossain, S. H. Scott, T. Cluff, and S. P. Dukelow, “The use of machine learning and deep learning techniques to assess proprioceptive impairments of the upper limb after stroke,” J. Neuroeng. Rehabil., vol. 20, no. 1, 2023, art. no. 15, doi: https://doi.org/10.1186/s12984-023-01140-9

X. H. Liu, et al., “Impaired Lower Limb Proprioception in Spinocerebellar Ataxia Type 3 and Its Affected Factors,” Front. Neurol., vol. 13, 2022, art. no. 833908, doi: https://doi.org/10.3389/fneur.2022.833908

L. Vargas, H. H. Huang, Y. Zhu, and X. Hu, “Static and dynamic proprioceptive recognition through vibrotactile stimulation,” J. Neural. Eng., vol. 18, no. 4, 2021, art. no. 046093, doi: https://doi.org/10.1088/1741-2552/ac0d43

M. Cyma-Wejchenig, J. Tarnas, K. Marciniak, and R. Stemplewski, “The influence of proprioceptive training with the use of virtual reality on postural stability of workers working at height,” Sensors, vol. 20, no. 13, 2020, art. no. 3731, doi: https://doi.org/10.3390/s20133731

M. Van Den Bogaart, et al., “Validity of deep learning based motion capture using DeepLabCut to assess proprioception,” Gait Posture, vol. 106, no. 1, 2023, art. no. S212, doi: https://doi.org/10.1016/j.gaitpost.2023.07.255

Y. Saiki, et al., “Reliabitily and validity of pose estimation algorithm for measurement of knee range of motion after total knee arthroplasty,” Bone Joint Res., vol. 12, no. 5, pp. 313–320, 2023, doi: https://doi.org/10.1302/2046-3758.125.bjr-2022-0257.r1

Y. Wang, Z. Pei, C. Wang, and Z. Tang, “Depth-aware pose estimation using deep learning for exoskeleton gait analysis,” Sci Rep, vol. 13, no. 1, 2023, art. no. 22681, doi: https://doi.org/10.1038/s41598-023-50207-z

W. Su, Y. Liu, S. Li, and Z. Cai, “Proprioception-Driven Wearer Pose Estimation for Egocentric Video,” in 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, Canada, 2022, pp. 3728–3735, doi: https://doi.org/10.1109/ICPR56361.2022.9956092

Y. Guler, et al., “Shoulder Proprioception Following Reverse Total Shoulder Arthroplasty for Unreconstructable Upper Third Fractures of the Humerus: 2-Year Outcomes 2022,” Indian J. Orthop., vol. 56, no. 12, pp. 2245–2252, 2022, doi: https://doi.org/10.1007/s43465-022-00769-3

Dos Santos Melício, et al., “DeepRehab: Real Time Pose Estimation on the Edge for Knee Injury Rehabilitation,” in Artificial Neural Networks and Machine Learning – ICANN 2021, Bratislava, Slovakia, 2021, doi: https://doi.org/10.1007/978-3-030-86365-4_31

F. Mo, et al., “A simulation-based framework with a proprioceptive musculoskeletal model for evaluating the rehabilitation exoskeleton system,” Comput. Methods Programs Biomed., vol. 208, 2021, art. no. 106270, doi: https://doi.org/10.1016/j.cmpb.2021.106270

M. A. Boswell, et al., “A neural network to predict the knee adduction moment in patients with osteoarthritis using anatomical landmarks obtainable from 2D video analysis,” Osteoarthritis Cartilage, vol. 29, no. 3, pp. 346–356, 2021, doi: https://doi.org/10.1016/j.joca.2020.12.017

M. Lapresa, et al., “A Smart Solution for Proprioceptive Rehabilitation through M-IMU Sensors,” in 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 2020, pp. 591-595, doi: https://doi.org/10.1109/MetroInd4.0IoT48571.2020.9138193

R. Wang, et al., “Real-time Soft Body 3D Proprioception via Deep Vision-based Sensing,” IEEE Robot Autom. Lett., vol. 5, no. 2, pp. 3382–3389, 2020, doi: https://doi.org/10.1109/LRA.2020.2975709

A. L. Rahlf, et al., “Validity and Reliability of an Inertial Sensor-Based Knee Proprioception Test in Younger vs. Older Adults,” Front. Sports Act. Living., vol. 1, 2019, art. no. 27, doi: https://doi.org/10.3389/fspor.2019.00027

I. A. Kuling, A. J. de Brouwer, J. B. J. Smeets, and J. R. Flanagan, “Correcting for natural visuo-proprioceptive matching errors based on reward as opposed to error feedback does not lead to higher retention,” Exp. Brain Res., vol. 237, no. 3, pp. 735–741, 2019, doi: https://doi.org/10.1007/s00221-018-5456-3

K. J. Sandbrink, et al., “Contrasting action and posture coding with hierarchical deep neural network models of proprioception,” Elife, vol. 12, 2023, art. no. e81499, doi: https://doi.org/10.7554/elife.81499

L. Winter, Q. Huang, J. V. L. Sertic, and J. Konczak, “The Effectiveness of Proprioceptive Training for Improving Motor Performance and Motor Dysfunction: A Systematic Review,” Front. Rehabil. Sci., vol. 3, 2022, art. no. 830166, doi: https://doi.org/10.3389/fresc.2022.830166

P. Mehta, et al., “Paresthesias and dysesthesias,” in Imaging Acute Neurologic Disease: A Symptom-Based Approach, Cambridge University Press, 2014, pp. 332-346, doi: https://doi.org/10.1017/CBO9781139565653.022

M. Buist, et al., “Novel Wearable Device for Mindful Sensorimotor Training: Integrating Motor Decoding and Somatosensory Stimulation for Neurorehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 32, pp. 1515–1523, 2024, doi: https://doi.org/10.1109/TNSRE.2024.3379996

A. Marin Vargas, A. Bisi, A. S. Chiappa, C. Versteeg, L. E. Miller, and A. Mathis, “Task-driven neural network models predict neural dynamics of proprioception,” Cell, vol. 187, no. 7, pp. 1745-1761.e19, 2024, doi: https://doi.org/10.1016/j.cell.2024.02.036

I. L. Yeh, et al., “Effects of a robot‐aided somatosensory training on proprioception and motor function in stroke survivors,” J. Neuroeng. Rehabil., vol. 18, no. 1, 2021, art. no. 77, doi: https://doi.org/10.1186/s12984-021-00871-x

G. Valle, et al., “A Psychometric Platform to Collect Somatosensory Sensations for Neuroprosthetic Use,” Front. Med. Technol., vol. 3, 2021, art. no. 619280, doi: https://doi.org/10.3389/fmedt.2021.619280

C. Lim, “Multi-sensorimotor training improves proprioception and balance in subacute stroke patients: A randomized controlled pilot trial,” Front. Neurol., vol. 10, 2019, art. no. 157, doi: https://doi.org/10.3389/fneur.2019.00157

G. Dover and M. E. Powers, “Reliability of Joint Position Sense and Force-Reproduction Measures During Internal and External Rotation of the Shoulder,” J. Athl. Train., vol. 38, no. 4, pp. 304–310, 2003.

G. Coskun, B. Talu, and A. Cools, “Proprioceptive force-reproduction of the rotator cuff in healthy subjects before and after muscle fatigue,” Isokinet. Exerc. Sci., vol. 26, no. 3, pp. 175–181, 2018, doi: https://doi.org/10.3233/IES-173206

H. Zhang, et al., “A Framework of a Lower Limb Musculoskeletal Model with Implemented Natural Proprioceptive Feedback and Its Progressive Evaluation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 8, pp. 1866–1875, 2020, doi: https://doi.org/10.1109/tnsre.2020.3003497

C. Xu, et al., “An advanced bionic knee joint mechanism with neural network controller,” Front. Neurorobot, vol. 17, 2023, art. no. 1178006, doi: https://doi.org/10.3389/fnbot.2023.1178006

L. Li, et al., “Effect of pinch types on pinch force sense in healthy adults,” Front. Hum. Neurosci., vol. 16, 2022, art. no. 990431, doi: https://doi.org/10.3389/fnhum.2022.990431

Descargas

Publicado

2025-03-20

Cómo citar

Trujillo Colón, U. ., Hernández Hernández, J. L., De La Cruz Gámez, E., Maldonado Astudillo, R. I. ., & Salazar, R. (2025). Tecnologías Emergentes como Apoyo en la Rehabilitación Propioceptiva: una Revisión del Alcance. Revista Mexicana De Ingenieria Biomedica, 46(1), e1472. https://doi.org/10.17488/RMIB.46.1.1472

Número

Sección

Artículos de Revisión

Citas Dimensions

Artículos más leídos del mismo autor/a