Comparison of Accuracy of Color Spaces in Cell Features Classification in Images of Leukemia types ALL and MM

  • Ing. Cinthia Espinoza Universidad Autónoma de Querétaro
  • Dr. Aurora Femat Universidad Autónoma de Querétaro
Keywords: PCA, Statistical moments, Color spaces, Leukemia images


This study presents a methodology for identifying the color space that provides the best performance in an image processing application. When measurements are performed without selecting the appropriate color model, the accuracy of the results is considerably altered. It is significant in computation, mainly when a diagnostic is based on stained cell microscopy images. This work shows how the proper selection of the color model provides better characterization in two types of cancer, acute lymphoid leukemia, and multiple myeloma. The methodology uses images from a public database. First, the nuclei are segmented, and then statistical moments are calculated for class identification. After, a principal component analysis is performed to reduce the extracted features and identify the most significant ones. At last, the predictive model is evaluated using the k-nearest neighbor algorithm and a confusion matrix. For the images used, the results showed that the CIE L*a*b color space best characterized the analyzed cancer types with an average accuracy of 95.52%. With an accuracy of 91.81%, RGB and CMY spaces followed. HSI and HSV spaces had an accuracy of 87.86% and 89.39%, respectively, and the worst performer was grayscale with an accuracy of 55.56%.


Download data is not yet available.


McKenzie SB, Williams JL. Clinical Laboratory Hematology. 3rd ed. Boston: Pearson; 2014. 1037p.

Bozzone DM. The Biology of Cancer: Leukemia. New York, N.Y.: Chelsea House Pub; 2009. 168p.

Sabath DE. Leukemia. In: Maloy S, Hughes K (eds). Brenner’s Encyclopedia of Genetics [Internet]. Academic Press;2013. 226–227p. Available from:

Halim NHA, Mashor MY, Hassan R. Automatic Blasts Counting for Acute Leukemia Based on Blood Samples. Int J Res Rev Comput Sci [Internet]. 2011;2(4):971–976. Available from:

Hazra T, Kumar M, Tripathy SS. Automatic Leukemia Detection Using Image Processing Technique. Int J Latest Technol Eng Manag Appl Sci [Internet]. 2017;6(4):42–45. Available from:

Putzu L, Caocci G, Di Ruberto C. Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med [Internet]. 2014;62(3):179–191. Available from:

Mittal A, Dhalla S, Gupta S, Gupta A. Automated analysis of blood smear images for leukemia detection: a comprehensive review. ACM Comput Surv [Internet]. 2022;1–36. Available from:

Shah A, Naqvi SS, Naveed K, Salem N, et al. Automated Diagnosis of Leukemia: A Comprehensive Review. IEEE Access [Internet]. 2021;9:132097–132124. Available from:

Mohammed ZF, Abdulla AA. Thresholding-based White Blood Cells Segmentation from Microscopic Blood Images. UHD J Sci Technol [Internet]. 2020;4(1):9–17. Available from:

Alsalem MA, Zaidan AA, Zaidan BB, Hashim M, et al. A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput Methods Programs Biomed [Internet]. 2018;158:93–112. Available from:

Anilkumar KK, Manoj VJ, Sagi TM. A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of Leukemia. Biocybern Biomed Eng [Internet]. 2020;40(4):1406-1420. Available from:

Mughal TI, Goldman JM, Mughal ST. Understanding Leukemias, Lymphomas and Myelomas. 2nd ed. London: CRC Press; 2013. 200p.

Dese K, Raj H, Ayana G, Yemane T, et al. Accurate Machine-Learning-Based classification of Leukemia from Blood Smear Images. Clin Lymphoma Myeloma Leuk [Internet]. 2021;21(11):903–914. Available from:

Saeedizadeh Z, Mehri Dehnavi A, Talebi A, Rabbani H, et al. Automatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifier. J Microsc [Internet]. 2016;261(1):46–56. Available from:

P R, P SD. Detection of Blood Cancer-Leukemia using K-means Algorithm. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS) [Internet]. Madurai: IEEE; 2021:838–842. Available from:

Soni F, Sahu L, Getnet ME, Reta BY. Supervised Method for Acute Lymphoblastic Leukemia Segmentation and Classification Using Image Processing. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI) [Internet]. Tirunelveli: IEEE; 2018:1075–1079. Available from:

Jagadev P, Virani HG. Detection of leukemia and its types using image processing and machine learning. In: 2017 International Conference on Trends in Electronics and Informatics (ICEI) [Internet]. Tirunelveli: IEEE; 2017:522–526. Available from:

Kumar P, Udwadia SM. Automatic detection of acute myeloid leukemia from microscopic blood smear image. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) [Internet]. Udupi: IEEE; 2017:1803–1807. Available from:

Mirmohammadi P, Ameri M, Shalbaf A. Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier. Phys Eng Sci Med [Internet]. 2021;44(2):433–441. Available from:

Abdeldaim AM, Sahlol AT, Elhoseny M, Hassanien AE. Computer-Aided Acute Lymphoblastic Leukemia Diagnosis System Based on Image Analysis. In: Hassanien A, Oliva D (eds). Studies in Computational Intelligence [Internet]. Cham: Springer; 2018:730.131–147p. Available from:

Rahman A, Hasan MM. Automatic Detection of White Blood Cells from Microscopic Images for Malignancy Classification of Acute Lymphoblastic Leukemia. In: 2018 International Conference on Innovation in Engineering and Technology (ICIET) [Internet]. Dhaka: IEEE; 2018:1–6. Available from:

Shafique S, Tehsin S, Anas S, Masud F. Computer-assisted Acute Lymphoblastic Leukemia detection and diagnosis. In: 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE) [Internet]. Islamabad: IEEE; 2019:184–189. Available from:

Singhal V, Singh P. Texture Features for the Detection of Acute Lymphoblastic Leukemia. In: Satapathy S, Joshi A, Modi N, Pathak N (eds). Advances in Intelligent Systems and Computing [Internet]. Singapore: Springer; 2016:535–43. Available from:

Rehman A, Abbas N, Saba T, Rahman SIU, et al. Classification of acute lymphoblastic leukemia using deep learning. Microsc Res Tech [Internet]. 2018;81(11):1310–1317. Available from:

Rawat J, Singh A, HS B, Virmani J, et al. Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybern Biomed Eng [Internet]. 2017;37(4):637–654. Available from:

Muntasa A, Yusuf M. Color-Based Hybrid Modeling to Classify the Acute Lymphoblastic Leukemia. Int J Intell Eng Syst [Internet]. 2020;13(4):408–422. Available from:

Mandal S, Daivajna V, V R. Machine Learning based System for Automatic Detection of Leukemia Cancer Cell. In: 2019 IEEE 16th India Council International Conference (INDICON) [Internet]. New Delhi: IEEE; 2019:1–4. Available from:

Acharya V, Kumar P. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med Biol Eng Comput [Internet]. 2019;57(8):1783–1811. Available from:

Bagasjvara RG, Candradewi I, Hartati S, Harjoko A. Automated detection and classification techniques of Acute leukemia using image processing: A review. In: 2016 2nd International Conference on Science and Technology-Computer (ICST) [Internet]. Yogyakarta: IEEE; 2016:35–43. Available from:

Belhekar A, Gagare K, Bedse R, Bhelkar Y, et al. Leukemia Cancer Detection Using Image Analytics : (Comparative Study). In: 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA) [Internet]. Pune: IEEE; 2019:1–6. Available from:

Khalid S, Khalil T, Nasreen S. A survey of feature selection and feature extraction techniques in machine learning. In: 2014 Science and Information Conference [Internet]. London: IEEE; 2014:372–378. Available from:

Kumar D, Jain N, Khurana A, Mittal S, et al. Automatic Detection of White Blood Cancer From Bone Marrow Microscopic Images Using Convolutional Neural Networks. IEEE Access [Internet]. 2020;8:142521–142531. Available from:

Sahlol AT, Abdeldaim AM, Hassanien AE. Automatic acute lymphoblastic leukemia classification model using social spider optimization algorithm. Soft Comput [Internet]. 2019;23(15):6345–6360. Available from:

Sahlol AT, Kollmannsberger P, Ewees AA. Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features. Sci Rep [Internet]. 2020;10(1):2536. Available from:

Mishra S, Majhi B, Sa PK. Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed Signal Process Control [Internet]. 2019;47:303–311. Available from:

Pešić I. Segmentation and Classification of Leucocyte Images for Detection of Acute Lymphoblastic Leukemia. In: 2020 7th ETRAN&IcETRAN international conference [Internet]. Belgrade: IcETRAN; 2020:2–7. Available from:

Mirmohammadi P, Taghavi A, Ameri A. Automatic Recognition of Acute Lymphoblastic Leukemia Cells from Microscopic Images. Int J Innov Res Sci Eng [Internet]. 2017;5(7):8-11. Available from: 17/IJIRSE170902.pdf

Salih Hasan BM, Abdulazeez AM. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. J Soft Comput Data Min [Internet]. 2021;2(1):20–30. Available from:

Jolliffe IT. Principal Component Analysis [Internet]. New York: Springer; 2002. 488p. Available from:

Harun NH, Bakar JA, Wahab ZA, Osman MK, et al. Color Image Enhancement of Acute Leukemia Cells in Blood Microscopic Image for Leukemia Detection Sample. In: 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE) [Internet]. Malaysia: IEEE; 2020:24–9. Available from:

Sukanya CM, Vince P. AML Detection in Blood Microscopic Images Using DRLBP and DRLTP Feature Extraction. Int J Eng Sci Comput [Internet]. 2016;6(6):6942–6946. Available from:

Rege MV, Abdulkareem MB, Gaikwad S, Gawli BW. Automatic Leukemia Identification System Using Otsu Image segmentation and MSER Approach for Microscopic Smear Image Database. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT) [Internet]. Coimbatore: IEEE; 2018:267–272. Available from:

Bhattacharjee R, Saini LM. Detection of Acute Lymphoblastic Leukemia using watershed transformation technique. In: 2015 International Conference on Signal Processing, Computing and Control (ISPCC) [Internet]. Waknaghat: IEEE; 2015:383–386. Available from:

Shinde S, Sharma N, Bansod P, Singh M, et al. Automated Nucleus Segmentation of Leukemia Blast Cells : Color Spaces Study. In: 2nd International Conference on Data, Engineering and Applications (IDEA) [Internet]. Bhopal: IEEE; 2020:1–5. Available from:

Nor Hazlyna H, Mashor MY, Mokhtar NR, Aimi Salihah AN, et al. Comparison of acute leukemia Image segmentation using HSI and RGB color space. In: 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010) [Internet]. Kuala Lumpur: IEEE; 2010:749–752. Available from:

Inbarani H H, Azar AT, G J. Leukemia Image Segmentation Using a Hybrid Histogram-Based Soft Covering Rough K-Means Clustering Algorithm. Electronics [Internet]. 2020;9(1):188. Available from:

Asadi F, Putra FM, Indah Sakinatunnisa M, Syafria F, et al. Implementation of Backpropagation Neural Network and Blood Cells Imagery Extraction for Acute Leukemia Classification. In: 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME) [Internet]. Bandung: IEEE; 2017:106–110. Available from:

Gupta A, Gupta R. SN-AM Dataset: White Blood Cancer Dataset of B-ALL and MM for Stain Normalization [Data set]. The Cancer Imaging Archive; 2019. Available from:

Soille P. Morphological Image Analysis: Principles and Applications. 2nd ed. Berlin, Heidelberg: Springer; 2004. 392p.

Moshavash Z, Danyali H, Helfroush MS. An Automatic and Robust Decision Support System for Accurate Acute Leukemia Diagnosis from Blood Microscopic Images. J Digit Imaging [Internet]. 2018;31(5):702–717. Available from:

Gonzalez RC, Woods RE. Digital Image Processing. 4th ed. New York: Pearson; 2018. 1168p.

R Core Team, R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna [Internet]. 2016. Available from:

Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses [Internet]. 2020. Available from:

Venables WN, Ripley BD. Modern Applied Statistics with S [Internet]. 4th ed. New York: Springer; 2002. 516p. Available from:

How to Cite
Espinoza Del Angel, C., & Femat-Diaz, A. (2022). Comparison of Accuracy of Color Spaces in Cell Features Classification in Images of Leukemia types ALL and MM. Mexican Journal of Biomedical Engineering, 43(2), 39-52. Retrieved from
Research Articles