Comparación de Precisión de Espacios de Color en la Clasificación de Características de Células en Imágenes de Leucemia tipos ALL y MM

Autores/as

  • Cinthia Espinoza Del Angel Universidad Autónoma de Querétaro, México
  • Aurora Femat-Diaz Universidad Autónoma de Querétaro, México https://orcid.org/0000-0002-3322-3660

DOI:

https://doi.org/10.17488/RMIB.43.2.3

Palabras clave:

PCA, Momentos estadísticos, Espacios de color, Imágenes de leucemia

Resumen

Este estudio presenta una metodología para identificar el espacio de color que proporciona el mejor rendimiento en una aplicación de procesamiento de imágenes. Cuando las mediciones se realizan sin seleccionar el modelo de color adecuado, la precisión de los resultados se altera considerablemente. Esto es significativo en el procesamiento, principalmente cuando el diagnóstico se basa en imágenes de microscopía de células teñidas. Este trabajo muestra cómo la selección adecuada del modelo de color proporciona una mejor caracterización en dos tipos de cáncer, la leucemia linfoide aguda y el mieloma múltiple. La metodología utiliza imágenes de una base de datos pública. Primero, se segmentan los núcleos y luego se calculan los momentos estadísticos para la identificación de clases. Posteriormente, se realiza un análisis de componentes principales para reducir las características extraídas e identificar las más significativas. Por último, el modelo predictivo se evalúa utilizando el algoritmo k-vecinos más cercanos y una matriz de confusión. Para las imágenes utilizadas, los resultados mostraron que el espacio de color CIE L*a*b caracterizó mejor los tipos de cáncer analizados con una precisión promedio del 95,52%. Con una precisión del 91,81%, siguieron los espacios RGB y CMY. Los espacios HSI y HSV tuvieron una precisión del 87,86% y el 89,39%, respectivamente, y el peor desempeño fue la escala de grises con una precisión del 55,56%.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

McKenzie SB, Williams JL. Clinical Laboratory Hematology. 3rd ed. Boston: Pearson; 2014. 1037p.

Bozzone DM. The Biology of Cancer: Leukemia. New York, N.Y.: Chelsea House Pub; 2009. 168p.

Sabath DE. Leukemia. In: Maloy S, Hughes K (eds). Brenner’s Encyclopedia of Genetics [Internet]. Academic Press;2013. 226–227p. Available from: https://doi.org/10.1016/B978-0-12-374984-0.00862-7

Halim NHA, Mashor MY, Hassan R. Automatic Blasts Counting for Acute Leukemia Based on Blood Samples. Int J Res Rev Comput Sci [Internet]. 2011;2(4):971–976. Available from: https://www.lumenera.com/media/wysiwyg/documents/whitepapers/IJRRCS-Research-Article.pdf

Hazra T, Kumar M, Tripathy SS. Automatic Leukemia Detection Using Image Processing Technique. Int J Latest Technol Eng Manag Appl Sci [Internet]. 2017;6(4):42–45. Available from: https://www.ijltemas.in/DigitalLibrary/Vol.6Issue4/42-45.pdf

Putzu L, Caocci G, Di Ruberto C. Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med [Internet]. 2014;62(3):179–191. Available from: https://doi.org/10.1016/j.artmed.2014.09.002

Mittal A, Dhalla S, Gupta S, Gupta A. Automated analysis of blood smear images for leukemia detection: a comprehensive review. ACM Comput Surv [Internet]. 2022;1–36. Available from: https://doi.org/10.1145/3514495

Shah A, Naqvi SS, Naveed K, Salem N, et al. Automated Diagnosis of Leukemia: A Comprehensive Review. IEEE Access [Internet]. 2021;9:132097–132124. Available from: https://doi.org/10.1109/ACCESS.2021.3114059

Mohammed ZF, Abdulla AA. Thresholding-based White Blood Cells Segmentation from Microscopic Blood Images. UHD J Sci Technol [Internet]. 2020;4(1):9–17. Available from: https://doi.org/10.21928/uhdjst.v4n1y2020.pp9-17

Alsalem MA, Zaidan AA, Zaidan BB, Hashim M, et al. A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput Methods Programs Biomed [Internet]. 2018;158:93–112. Available from: https://doi.org/10.1016/j.cmpb.2018.02.005

Anilkumar KK, Manoj VJ, Sagi TM. A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of Leukemia. Biocybern Biomed Eng [Internet]. 2020;40(4):1406-1420. Available from: https://doi.org/10.1016/j.bbe.2020.08.010

Mughal TI, Goldman JM, Mughal ST. Understanding Leukemias, Lymphomas and Myelomas. 2nd ed. London: CRC Press; 2013. 200p.

Dese K, Raj H, Ayana G, Yemane T, et al. Accurate Machine-Learning-Based classification of Leukemia from Blood Smear Images. Clin Lymphoma Myeloma Leuk [Internet]. 2021;21(11):903–914. Available from: https://doi.org/10.1016/j.clml.2021.06.025

Saeedizadeh Z, Mehri Dehnavi A, Talebi A, Rabbani H, et al. Automatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifier. J Microsc [Internet]. 2016;261(1):46–56. Available from: https://doi.org/10.1111/jmi.12314

P R, P SD. Detection of Blood Cancer-Leukemia using K-means Algorithm. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS) [Internet]. Madurai: IEEE; 2021:838–842. Available from: https://doi.org/10.1109/ICICCS51141.2021.9432244

Soni F, Sahu L, Getnet ME, Reta BY. Supervised Method for Acute Lymphoblastic Leukemia Segmentation and Classification Using Image Processing. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI) [Internet]. Tirunelveli: IEEE; 2018:1075–1079. Available from: https://doi.org/10.1109/ICOEI.2018.8553937

Jagadev P, Virani HG. Detection of leukemia and its types using image processing and machine learning. In: 2017 International Conference on Trends in Electronics and Informatics (ICEI) [Internet]. Tirunelveli: IEEE; 2017:522–526. Available from: https://doi.org/10.1109/ICOEI.2017.8300983

Kumar P, Udwadia SM. Automatic detection of acute myeloid leukemia from microscopic blood smear image. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) [Internet]. Udupi: IEEE; 2017:1803–1807. Available from: https://doi.org/10.1109/ICACCI.2017.8126106

Mirmohammadi P, Ameri M, Shalbaf A. Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier. Phys Eng Sci Med [Internet]. 2021;44(2):433–441. Available from: https://doi.org/10.1007/s13246-021-00993-5

Abdeldaim AM, Sahlol AT, Elhoseny M, Hassanien AE. Computer-Aided Acute Lymphoblastic Leukemia Diagnosis System Based on Image Analysis. In: Hassanien A, Oliva D (eds). Studies in Computational Intelligence [Internet]. Cham: Springer; 2018:730.131–147p. Available from: https://doi.org/10.1007/978-3-319-63754-9_7

Rahman A, Hasan MM. Automatic Detection of White Blood Cells from Microscopic Images for Malignancy Classification of Acute Lymphoblastic Leukemia. In: 2018 International Conference on Innovation in Engineering and Technology (ICIET) [Internet]. Dhaka: IEEE; 2018:1–6. Available from: https://doi.org/10.1109/CIET.2018.8660914

Shafique S, Tehsin S, Anas S, Masud F. Computer-assisted Acute Lymphoblastic Leukemia detection and diagnosis. In: 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE) [Internet]. Islamabad: IEEE; 2019:184–189. Available from: https://doi.org/10.1109/C-CODE.2019.8680972

Singhal V, Singh P. Texture Features for the Detection of Acute Lymphoblastic Leukemia. In: Satapathy S, Joshi A, Modi N, Pathak N (eds). Advances in Intelligent Systems and Computing [Internet]. Singapore: Springer; 2016:535–43. Available from: https://doi.org/10.1007/978-981-10-0135-2_52

Rehman A, Abbas N, Saba T, Rahman SIU, et al. Classification of acute lymphoblastic leukemia using deep learning. Microsc Res Tech [Internet]. 2018;81(11):1310–1317. Available from: https://doi.org/10.1002/jemt.23139

Rawat J, Singh A, HS B, Virmani J, et al. Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybern Biomed Eng [Internet]. 2017;37(4):637–654. Available from: https://doi.org/10.1016/j.bbe.2017.07.003

Muntasa A, Yusuf M. Color-Based Hybrid Modeling to Classify the Acute Lymphoblastic Leukemia. Int J Intell Eng Syst [Internet]. 2020;13(4):408–422. Available from: https://doi.org/10.22266/ijies2020.0831.36

Mandal S, Daivajna V, V R. Machine Learning based System for Automatic Detection of Leukemia Cancer Cell. In: 2019 IEEE 16th India Council International Conference (INDICON) [Internet]. New Delhi: IEEE; 2019:1–4. Available from: https://doi.org/10.1109/INDICON47234.2019.9029034

Acharya V, Kumar P. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med Biol Eng Comput [Internet]. 2019;57(8):1783–1811. Available from: https://doi.org/10.1007/s11517-019-01984-1

Bagasjvara RG, Candradewi I, Hartati S, Harjoko A. Automated detection and classification techniques of Acute leukemia using image processing: A review. In: 2016 2nd International Conference on Science and Technology-Computer (ICST) [Internet]. Yogyakarta: IEEE; 2016:35–43. Available from: https://doi.org/10.1109/ICSTC.2016.7877344

Belhekar A, Gagare K, Bedse R, Bhelkar Y, et al. Leukemia Cancer Detection Using Image Analytics : (Comparative Study). In: 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA) [Internet]. Pune: IEEE; 2019:1–6. Available from: https://doi.org/10.1109/ICCUBEA47591.2019.9128546

Khalid S, Khalil T, Nasreen S. A survey of feature selection and feature extraction techniques in machine learning. In: 2014 Science and Information Conference [Internet]. London: IEEE; 2014:372–378. Available from: https://doi.org/10.1109/SAI.2014.6918213

Kumar D, Jain N, Khurana A, Mittal S, et al. Automatic Detection of White Blood Cancer From Bone Marrow Microscopic Images Using Convolutional Neural Networks. IEEE Access [Internet]. 2020;8:142521–142531. Available from: https://doi.org/10.1109/ACCESS.2020.3012292

Sahlol AT, Abdeldaim AM, Hassanien AE. Automatic acute lymphoblastic leukemia classification model using social spider optimization algorithm. Soft Comput [Internet]. 2019;23(15):6345–6360. Available from: https://doi.org/10.1007/s00500-018-3288-5

Sahlol AT, Kollmannsberger P, Ewees AA. Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features. Sci Rep [Internet]. 2020;10(1):2536. Available from: https://doi.org/10.1038/s41598-020-59215-9

Mishra S, Majhi B, Sa PK. Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed Signal Process Control [Internet]. 2019;47:303–311. Available from: https://doi.org/10.1016/j.bspc.2018.08.012

Pešić I. Segmentation and Classification of Leucocyte Images for Detection of Acute Lymphoblastic Leukemia. In: 2020 7th ETRAN&IcETRAN international conference [Internet]. Belgrade: IcETRAN; 2020:2–7. Available from: https://www.etran.rs/2020/ZBORNIK_RADOVA/Radovi_prikazani_na_konferenciji/047_BTI1.7.pdf

Mirmohammadi P, Taghavi A, Ameri A. Automatic Recognition of Acute Lymphoblastic Leukemia Cells from Microscopic Images. Int J Innov Res Sci Eng [Internet]. 2017;5(7):8-11. Available from: https://ijirse.in/docs/2017/Sep 17/IJIRSE170902.pdf

Salih Hasan BM, Abdulazeez AM. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. J Soft Comput Data Min [Internet]. 2021;2(1):20–30. Available from: https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/8032

Jolliffe IT. Principal Component Analysis [Internet]. New York: Springer; 2002. 488p. Available from: https://doi.org/10.1007/b98835

Harun NH, Bakar JA, Wahab ZA, Osman MK, et al. Color Image Enhancement of Acute Leukemia Cells in Blood Microscopic Image for Leukemia Detection Sample. In: 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE) [Internet]. Malaysia: IEEE; 2020:24–9. Available from: https://doi.org/10.1109/ISCAIE47305.2020.9108810

Sukanya CM, Vince P. AML Detection in Blood Microscopic Images Using DRLBP and DRLTP Feature Extraction. Int J Eng Sci Comput [Internet]. 2016;6(6):6942–6946. Available from: https://ijesc.org/upload/16ed93ec7acaf83596e4dc815fc66cad.AML%20Detection%20in%20Blood%20Microscopic%20Images%20Using%20%20DRLBP%20and%20DRLTP%20Feature%20Extraction.pdf

Rege MV, Abdulkareem MB, Gaikwad S, Gawli BW. Automatic Leukemia Identification System Using Otsu Image segmentation and MSER Approach for Microscopic Smear Image Database. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT) [Internet]. Coimbatore: IEEE; 2018:267–272. Available from: https://doi.org/10.1109/ICICCT.2018.8473101

Bhattacharjee R, Saini LM. Detection of Acute Lymphoblastic Leukemia using watershed transformation technique. In: 2015 International Conference on Signal Processing, Computing and Control (ISPCC) [Internet]. Waknaghat: IEEE; 2015:383–386. Available from: https://doi.org/10.1109/ISPCC.2015.7375060

Shinde S, Sharma N, Bansod P, Singh M, et al. Automated Nucleus Segmentation of Leukemia Blast Cells : Color Spaces Study. In: 2nd International Conference on Data, Engineering and Applications (IDEA) [Internet]. Bhopal: IEEE; 2020:1–5. Available from: https://doi.org/10.1109/IDEA49133.2020.9170721

Nor Hazlyna H, Mashor MY, Mokhtar NR, Aimi Salihah AN, et al. Comparison of acute leukemia Image segmentation using HSI and RGB color space. In: 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010) [Internet]. Kuala Lumpur: IEEE; 2010:749–752. Available from: https://doi.org/10.1109/ISSPA.2010.5605410

Inbarani H H, Azar AT, G J. Leukemia Image Segmentation Using a Hybrid Histogram-Based Soft Covering Rough K-Means Clustering Algorithm. Electronics [Internet]. 2020;9(1):188. Available from: https://doi.org/10.3390/electronics9010188

Asadi F, Putra FM, Indah Sakinatunnisa M, Syafria F, et al. Implementation of Backpropagation Neural Network and Blood Cells Imagery Extraction for Acute Leukemia Classification. In: 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME) [Internet]. Bandung: IEEE; 2017:106–110. Available from: https://doi.org/10.1109/ICICI-BME.2017.8537755

Gupta A, Gupta R. SN-AM Dataset: White Blood Cancer Dataset of B-ALL and MM for Stain Normalization [Data set]. The Cancer Imaging Archive; 2019. Available from: https://doi.org/10.7937/tcia.2019.of2w8lxr

Soille P. Morphological Image Analysis: Principles and Applications. 2nd ed. Berlin, Heidelberg: Springer; 2004. 392p.

Moshavash Z, Danyali H, Helfroush MS. An Automatic and Robust Decision Support System for Accurate Acute Leukemia Diagnosis from Blood Microscopic Images. J Digit Imaging [Internet]. 2018;31(5):702–717. Available from: https://doi.org/10.1007/s10278-018-0074-y

Gonzalez RC, Woods RE. Digital Image Processing. 4th ed. New York: Pearson; 2018. 1168p.

R Core Team, R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna [Internet]. 2016. Available from: https://www.R-project.org/

Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses [Internet]. 2020. Available from: https://cran.r-project.org/package=factoextra

Venables WN, Ripley BD. Modern Applied Statistics with S [Internet]. 4th ed. New York: Springer; 2002. 516p. Available from: https://doi.org/10.1007/978-0-387-21706-2

Publicado

2022-06-28

Cómo citar

Espinoza Del Angel, C., & Femat-Diaz, A. (2022). Comparación de Precisión de Espacios de Color en la Clasificación de Características de Células en Imágenes de Leucemia tipos ALL y MM. Revista Mexicana De Ingenieria Biomedica, 43(2), 39–52. https://doi.org/10.17488/RMIB.43.2.3

Número

Sección

Artículos de Investigación

Citas Dimensions