Electrical Impedance Tomography to Measure Spirometry Parameters in Chronic Obstructive Pulmonary Disease Patients

Authors

  • Francisco Miguel Vargas Luna Universidad de Guanajuato, México https://orcid.org/0000-0003-2088-8492
  • Svetlana Kashina Universidad de Guanajuato, México https://orcid.org/0000-0003-4277-2060
  • Pere Joan Riu Costa Universidad Politécnica de Cataluña, Spain https://orcid.org/0000-0003-0477-1972
  • Pere Casan Clarà Research Institute of the Principality of Asturias (ISPA) - University of Oviedo, Spain
  • José Marco Balleza Ordaz Universidad Autónoma de Guanajuato, México

DOI:

https://doi.org/10.17488/RMIB.43.3.3

Keywords:

Electrical impedance tomography, respiration, spirometry, calibration, monitoring

Abstract

Spirometry is a test for the diagnosis of chronic obstructive pulmonary disease. It is a technique that can be intolerant due to the essential use of a mouthpiece and a clamp. This study proposes the use of electrical impedance tomography to measure respiratory parameters. Patients underwent spirometry and three respiratory exercises. The impedance signals were convolved, and the resultant was analyzed by fast Fourier transform. The frequency spectrum was divided into seven segments (R1 to R7). Each segment was represented in terms of quartiles (Q25%, Q50%, Q75%). Each quartile of each segment was correlated with the spirometric parameters to obtain a fitting equation. FVC was correlated 70% with the 3 quartiles of R7, 3 equations were obtained with a fit of 60%. FEV1 correlated 70% with the Q50% of R7, obtaining an equation with a fit of 40%. FEV1/FVC correlated 69% with Q75% of R2, obtaining an equation with a fit of 60%. Spirometric parameters can be estimated from the implied carrier frequency components of the ventilatory impedance signal.

Downloads

Download data is not yet available.

References

Instituto Nacional de Estadística, Geografía e Informática (INEGI). Mortality dataset, distributed by INEGI. [Internet]. 2022. Available from: https://www.inegi.org.mx/programas/mortalidad/#Tabulados

Global Initiative for Chronic Obstructive Lung Disease. 2022 Gold Reports [Internet]. 2022. Available from: https://goldcopd.org/wp-content/uploads/2021/12/GOLD-REPORT-2022-v1.1-22Nov2021_WMV.pdf

Halpin DMG, Criner GJ, Papi A, Singh D, et al. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med [Internet]. 2021;203(1):24-36. Available from: https://doi.org/10.1164/rccm.202009-3533SO

Virani A, Baltaji S, Young M, Dumont T, et al. Chronic Obstructive Pulmonary Disease: Diagnosis and GOLD Classification. Crit Care Nurs Q [Internet]. 2021;44(1):9-18. Available from: https://doi.org/10.1097/CNQ.0000000000000335

Hernández-Ruiz A, Ortega HJ, Aguirre-Acevedo DC. Utilidad de la espirometría en los pacientes hospitalizados por la enfermedad pulmonar obstructiva crónica (EPOC) exacerbada. Iatreia [Internet]. 2020;33(4):341-347. Available from: https://revistas.udea.edu.co/index.php/iatreia/article/view/339541

Zhao Z, Fu F, Frerichs I. Thoracic electrical impedance tomography in Chinese hospitals: a review of clinical research and daily applications. Physiol Meas [Internet]. 2020;41(4):04TR01. Available from: https://doi.org/10.1088/1361-6579/ab81df

Karagiannidis C, Waldmann AD, Róka PL, Schreiber T, et al. Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study. Crit Care [Internet]. 2018;22(1):221. Available from: https://doi.org/10.1186/s13054-018-2137-3

Vogt B, Zhao Z, Zabel P, Weiler N, et al. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol [Internet]. 2016;311(1):L8-L19. Available from: https://doi.org/10.1152/ajplung.00463.2015

Tang Y, Turner MJ, Yem JS, Baker AB. Calibration of pneumotachographs using a calibrated syringe. J Appl Physiol [Internet]. 2003;95(2):571-576. Available from: https://doi.org/10.1152/japplphysiol.00196.2003

de Lema B, Casan P, Riu PJ. Electrical Impedance Tomography: Standardizing the Procedure in Pneumology. Arch Bronconeumol [Internet]. 2006;42(6):299–301. Available from: https://doi.org/10.1016/s1579-2129(06)60146-8

Balleza Ordaz JM. Monitorización del patrón ventilatorio (PV) mediante tomografía por impedancia eléctrica (TIE) en paciente con enfermedad pulmonar obstructiva crónica (EPOC) [Ph.D.'s thesis]. [Cataluña]: Universitat Politèctica de Catalunya, 2012. 261p. Spanish. Available from: https://upcommons.upc.edu/bitstream/handle/2117/94737/TJBO1de1.pdf;jsessionid=A8A27A61BBD1417D29C2D0179ED3DAAC?sequence=1

Serrano RE, de Lema B, Casas O, Feixas T, et al. Use of electrical impedance tomography (TIE) for the assessment of unilateral pulmonary function. Physiol Meas [Internet]. 2002;23(1):211. Available from: https://doi.org/10.1088/0967-3334/23/1/322

Casas O, Rosell J, Bragós R, Lozano A, et al. A parallel broadband real-time system for electrical impedance tomography. Physiol Meas [Internet]. 1996;17(4A):A1. Available from: https://doi.org/10.1088/0967-3334/17/4A/002

Phyton, version 3.10 [Internet]. Python Software Foundation; 2022. Available from: https://www.python.org/downloads/release/python-3104/

Smith SW. The Scientist and Engineer’s Guide to Digital Signal Processing [Internet]. San Diego: California Technical Publishing; 1999. Available from: https://www.dspguide.com/

Weeks M. Digital Signal Processing: using MATLAB and wavelets. Massachusetts: Jones & Bartlett Learning; 2007. 492p.

Braždžionytė J, Macas A. Bland–Altman analysis as an alternative approach for statistical evaluation of agreement between two methods for measuring hemodynamics during acute myocardial infarction. Medicina [Internet]. 2007;43(3):208. Available from: https://doi.org/10.3390/medicina43030025

Grimnes S, Martinsen OG. Bioimpedance and bioelectricity basics [Internet]. Oxford: Academic Press; 2008. 488p. Available from: https://www.sciencedirect.com/book/9780123740045/bioimpedance-and-bioelectricity-basics

Milne S, Huvanandana J, Nguyen C, Duncan JM, et al. Time-based pulmonary features from electrical impedance tomography demonstrate ventilation heterogeneity in chronic obstructive pulmonary disease. J Appl Physiol [Internet]. 2019;127(5):1441-1452. Available from: https://doi.org/10.1152/japplphysiol.00304.2019

Lasarow L, Vogt B, Zhao Z, Balke L, et al. Regional lung function measures determined by electrical impedance tomography during repetitive ventilation maneuvers in patients with COPD. Physiol Meas [Internet]. 2021;42:015008. Available from: https://iopscience.iop.org/article/10.1088/1361-6579/abdad6

Downloads

Published

2022-12-07

How to Cite

Vargas Luna, F. M., Kashina, S., Riu Costa, P. J., Casan Clarà, P., & Balleza Ordaz, J. M. (2022). Electrical Impedance Tomography to Measure Spirometry Parameters in Chronic Obstructive Pulmonary Disease Patients. Revista Mexicana De Ingenieria Biomedica, 43(3), 25–35. https://doi.org/10.17488/RMIB.43.3.3

Issue

Section

Research Articles

Dimensions Citation

Most read articles by the same author(s)