Electrical Impedance Tomography to Measure Spirometry Parameters in Chronic Obstructive Pulmonary Disease Patients
DOI:
https://doi.org/10.17488/RMIB.43.3.3Keywords:
Electrical impedance tomography, respiration, spirometry, calibration, monitoringAbstract
Spirometry is a test for the diagnosis of chronic obstructive pulmonary disease. It is a technique that can be intolerant due to the essential use of a mouthpiece and a clamp. This study proposes the use of electrical impedance tomography to measure respiratory parameters. Patients underwent spirometry and three respiratory exercises. The impedance signals were convolved, and the resultant was analyzed by fast Fourier transform. The frequency spectrum was divided into seven segments (R1 to R7). Each segment was represented in terms of quartiles (Q25%, Q50%, Q75%). Each quartile of each segment was correlated with the spirometric parameters to obtain a fitting equation. FVC was correlated 70% with the 3 quartiles of R7, 3 equations were obtained with a fit of 60%. FEV1 correlated 70% with the Q50% of R7, obtaining an equation with a fit of 40%. FEV1/FVC correlated 69% with Q75% of R2, obtaining an equation with a fit of 60%. Spirometric parameters can be estimated from the implied carrier frequency components of the ventilatory impedance signal.
Downloads
References
Instituto Nacional de Estadística, Geografía e Informática (INEGI). Mortality dataset, distributed by INEGI. [Internet]. 2022. Available from: https://www.inegi.org.mx/programas/mortalidad/#Tabulados
Global Initiative for Chronic Obstructive Lung Disease. 2022 Gold Reports [Internet]. 2022. Available from: https://goldcopd.org/wp-content/uploads/2021/12/GOLD-REPORT-2022-v1.1-22Nov2021_WMV.pdf
Halpin DMG, Criner GJ, Papi A, Singh D, et al. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med [Internet]. 2021;203(1):24-36. Available from: https://doi.org/10.1164/rccm.202009-3533SO
Virani A, Baltaji S, Young M, Dumont T, et al. Chronic Obstructive Pulmonary Disease: Diagnosis and GOLD Classification. Crit Care Nurs Q [Internet]. 2021;44(1):9-18. Available from: https://doi.org/10.1097/CNQ.0000000000000335
Hernández-Ruiz A, Ortega HJ, Aguirre-Acevedo DC. Utilidad de la espirometría en los pacientes hospitalizados por la enfermedad pulmonar obstructiva crónica (EPOC) exacerbada. Iatreia [Internet]. 2020;33(4):341-347. Available from: https://revistas.udea.edu.co/index.php/iatreia/article/view/339541
Zhao Z, Fu F, Frerichs I. Thoracic electrical impedance tomography in Chinese hospitals: a review of clinical research and daily applications. Physiol Meas [Internet]. 2020;41(4):04TR01. Available from: https://doi.org/10.1088/1361-6579/ab81df
Karagiannidis C, Waldmann AD, Róka PL, Schreiber T, et al. Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study. Crit Care [Internet]. 2018;22(1):221. Available from: https://doi.org/10.1186/s13054-018-2137-3
Vogt B, Zhao Z, Zabel P, Weiler N, et al. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol [Internet]. 2016;311(1):L8-L19. Available from: https://doi.org/10.1152/ajplung.00463.2015
Tang Y, Turner MJ, Yem JS, Baker AB. Calibration of pneumotachographs using a calibrated syringe. J Appl Physiol [Internet]. 2003;95(2):571-576. Available from: https://doi.org/10.1152/japplphysiol.00196.2003
de Lema B, Casan P, Riu PJ. Electrical Impedance Tomography: Standardizing the Procedure in Pneumology. Arch Bronconeumol [Internet]. 2006;42(6):299–301. Available from: https://doi.org/10.1016/s1579-2129(06)60146-8
Balleza Ordaz JM. Monitorización del patrón ventilatorio (PV) mediante tomografía por impedancia eléctrica (TIE) en paciente con enfermedad pulmonar obstructiva crónica (EPOC) [Ph.D.'s thesis]. [Cataluña]: Universitat Politèctica de Catalunya, 2012. 261p. Spanish. Available from: https://upcommons.upc.edu/bitstream/handle/2117/94737/TJBO1de1.pdf;jsessionid=A8A27A61BBD1417D29C2D0179ED3DAAC?sequence=1
Serrano RE, de Lema B, Casas O, Feixas T, et al. Use of electrical impedance tomography (TIE) for the assessment of unilateral pulmonary function. Physiol Meas [Internet]. 2002;23(1):211. Available from: https://doi.org/10.1088/0967-3334/23/1/322
Casas O, Rosell J, Bragós R, Lozano A, et al. A parallel broadband real-time system for electrical impedance tomography. Physiol Meas [Internet]. 1996;17(4A):A1. Available from: https://doi.org/10.1088/0967-3334/17/4A/002
Phyton, version 3.10 [Internet]. Python Software Foundation; 2022. Available from: https://www.python.org/downloads/release/python-3104/
Smith SW. The Scientist and Engineer’s Guide to Digital Signal Processing [Internet]. San Diego: California Technical Publishing; 1999. Available from: https://www.dspguide.com/
Weeks M. Digital Signal Processing: using MATLAB and wavelets. Massachusetts: Jones & Bartlett Learning; 2007. 492p.
Braždžionytė J, Macas A. Bland–Altman analysis as an alternative approach for statistical evaluation of agreement between two methods for measuring hemodynamics during acute myocardial infarction. Medicina [Internet]. 2007;43(3):208. Available from: https://doi.org/10.3390/medicina43030025
Grimnes S, Martinsen OG. Bioimpedance and bioelectricity basics [Internet]. Oxford: Academic Press; 2008. 488p. Available from: https://www.sciencedirect.com/book/9780123740045/bioimpedance-and-bioelectricity-basics
Milne S, Huvanandana J, Nguyen C, Duncan JM, et al. Time-based pulmonary features from electrical impedance tomography demonstrate ventilation heterogeneity in chronic obstructive pulmonary disease. J Appl Physiol [Internet]. 2019;127(5):1441-1452. Available from: https://doi.org/10.1152/japplphysiol.00304.2019
Lasarow L, Vogt B, Zhao Z, Balke L, et al. Regional lung function measures determined by electrical impedance tomography during repetitive ventilation maneuvers in patients with COPD. Physiol Meas [Internet]. 2021;42:015008. Available from: https://iopscience.iop.org/article/10.1088/1361-6579/abdad6
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ingeniería Biomédica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.