Antibacterial Activity Analysis of Hydroxyapatite Based Materials with Fluorine and Silver

Authors

  • Verónica González Torres Facultad de Ciencias de la Salud Universidad Autónoma de Baja California, Mexico https://orcid.org/0000-0002-2049-7638
  • Esteban Hernández Guevara Facultad de Ciencias Químicas e Ingeniería Universidad Autónoma de Baja California, México
  • Nydia Alejandra Castillo Martínez Universidad Autónoma de Baja California, México https://orcid.org/0000-0002-7460-9228
  • Martha Rosales Aguilar Facultad de Medicina y Psicología Universidad Autónoma de Baja California, México
  • César Gerardo Díaz Trujillo Universidad Autónoma de Baja California, México

DOI:

https://doi.org/10.17488/RMIB.42.2.4

Keywords:

Hydroxyapatite, Antibacterial, Silver

Abstract

This investigation aims to evaluate the antibacterial activity of nanostructured hydroxyapatite based materials doped with silver and fluorine, to be used as a biomaterial with antibacterial activity. Four different formulations were prepared by combustion method: hydroxyapatite, hydroxyapatite-fluorine, hydroxyapatite-silver-fluorine and hydroxyapatite-silver, with 2% of the doping agents. X-ray diffraction technique was used to determine the mineralogy, identifying the presence of Ca5(PO4)3OH, Ca2P2O7, Ag3PO4, AgCa10(PO4)7 Ca5(PO4)3F and CaF2 phases for the studied samples. Scanning electron microscopy was used to study the morphological structure and it showed homogeneous crystallization of the hydroxyapatite and the inclusion of dopant agents. The antibacterial activity was determined using a modified inhibition test zone to observe if the bacteria (E. faecalis) was susceptible to the antimicrobial agent by the appearance of the zone of inhibition on the agar plate. Both the hydroxyapatite-silver and the hydroxyapatite-silver-fluorine materials generated an inhibition zone. It was possible to determine the minimum inhibitory concentration needed to kill most viable organisms after 48 hours of incubation using the broth microdilution method, resulting in 75 µg/ml and 200 µg/ml for the hydroxyapatite-silver and the hydroxyapatite-silver-fluorine formulation, respectively. These materials could be used for the development of new biomaterials that can be used in dental applications.

Downloads

Download data is not yet available.

Author Biography

Verónica González Torres, Facultad de Ciencias de la Salud Universidad Autónoma de Baja California, Mexico

Doctora en Ciencias de la Salud egresada de la Facultad de Odontología Tijuana de la Universidad Autónoma de Baja California.

Maestra en Ciencias con especialidad en Sistemas Ambientales egresada del Instituto Tecnológico y de Estudios Superiores de Monterrey (Campus Monterrey).

Químico Industrial egresada de la Facultad de Ciencia Químicas e Ingeniería de la Unviersidad Autónoma de Baja California.

Profesor de tiempo completo definitivo con nombramiento de profesor investigador adscrita a la Escuela de Ciencias de la Salud Valle de las Palmas de la Universidad Autónoma de Baja California.

Perfil deseable PRODEP.

Miembro del Cuerpo Académico en formación: Química Aplicada.

Docente de cátedra: bioquímica, estadística, epidemiología.

Cargo administrativo: Subdirectora 

References

Tas AC. Combustion synthesis of calcium phosphate bioceramic powders. J Eur Ceram Soc [Internet]. 2000;20(14-15):2389-2394. Available from: https://doi.org/10.1016/S0955-2219(00)00129-1

Markovic M, Fowler BO, Tung MS. Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material. J Res Natl Inst Stand Technol [Internet]. 2004;109(6):553-68. Available from: http://dx.doi.org/10.6028/jres.109.042

Nayak AK. Hydroxyapatite synthesis methodologies: an overview. Int J ChemTech Res. 2010; 2(2): 903-907.

González-Torres V, Méndez-Sánchez ER, Gaitán-Cepeda LA, et al. Characterization and Biocompatibility Evaluation of Hydroxyapatite Doped with Silver and/or Fluorine. Adv Sci Tech [Internet]. 2014;96:27-32. Available from:

https://doi.org/10.4028/www.scientific.net/AST.96.27

Robinson C, Shore RC, Brookes SJ, et al. The Chemistry of Enamel Caries. Crit Rev Oral Bio Med [Internet]. 2000;11(4):481-495. Available from: https://doi.org/10.1177/10454411000110040601

Kim TN, Feng QL, Kim JO, et al. Antimicrobial effects of metal ions (Ag+. Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med [Internet]. 1998;9(3):129-34. Available from: https://doi.org/10.1023/A:1008811501734

Kawashita M, Tsuneyama S, Miyaji F, et al. Antibacterial silver-containing silica glass prepared by sol-gel method. Biomaterials [Internet]. 2000;21(4):393-98. Available from: https://doi.org/10.1016/S0142-9612(99)00201-X

Bai X, More K, Rouleau CM, Rabiei A. Functionally graded hydroxyapatite coatings doped with antibacterial components. Acta Biomater [Internet]. 2010;6(6):2264-2273. Available from: https://doi.org/10.1016/j.actbio.2009.12.002

Kolmas J, Groszyk E, Kwiatkowska-Różycka D. Substituted Hydroxyapatites with Antibacterial Properties. BioMed Res Int [Internet]. 2014;2014:1-15. Available from: https://doi.org/10.1155/2014/178123

Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev [Internet]. 2006;27(2-3):341-53. Available from: https://doi.org/10.1016/S0168-6445(03)00047-0

Burdusel, A-C, Gherasim O, Grumezescu AM, et al. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials [Internet]. 2018; 8(9):681. Available from: https://doi.org/10.3390/nano8090681

Durán N, Durán M, de Jesús MB, et al. Silver nanoparticles: A new vie won mechanistic aspects on antimicrobial activity. NMB [Internet]. 2016;12(3):789-799. Available from: https://doi.org/10.1016/j.nano.2015.11.016

Salleh A, Naomi R, Utami ND, et al. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials [Internet]. 2020;10(8): 1566. Available from: https://doi.org/10.3390/nano10081566

National Committee for Clinical Laboratory Standards. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. Wayne, PA: National Committee for Clinical Laboratory Standards; 1999.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests. 13th ed. Wayne, PA: National Committee for Clinical Laboratory Standards; 2018. 92p.

Flanagan D. Enterococcus faecalis and Dental Implants. J Oral Implantol [Internet]. 2017; 43(1):8-11. Available from: https://doi.org/10.1563/aaid-joi-D-16-00069

Prad I, Micó-Muñoz P, Giner-Lluesma T, Collado-Castellano N, Manzano-Saiz A. Influence of microbiology of endodontic failure. Literature review. Med Oral [Internet]. 2019;24(3):e364-72. Available from: https://doi.org/10.4317/medoral.22907

Halkai R, Hedge MN, Halkai K. Evaluation of the presence of Enterococcus Faecalis in root cementum: A confocal laser scanning microscope analysis. J Conserv Dent [Internet]. 2014;17(2):119-23. Available from: https://doi.org/10.4103/0972-0707.128039

Downloads

Published

2021-03-21

How to Cite

González Torres, V., Hernández Guevara, E., Castillo Martínez, N. A., Rosales Aguilar, M., & Díaz Trujillo, C. G. (2021). Antibacterial Activity Analysis of Hydroxyapatite Based Materials with Fluorine and Silver. Revista Mexicana De Ingenieria Biomedica, 42(2), 49–57. https://doi.org/10.17488/RMIB.42.2.4

Issue

Section

Research Articles

Dimensions Citation