Hydroxyapatite and Biopolymer Composites with Promising Biomedical Applications
DOI:
https://doi.org/10.17488/RMIB.43.2.1Keywords:
Composites, Hydroxyapatite, BiopolymersAbstract
The purpose of tissue engineering (regenerative medicine) is to develop materials that replace human tissue, having as main characteristics' biodegradability, biocompatibility, no toxicity, osteoconductivity, which lead to cell maturation and proliferation. Due to the importance of the development of this type of materials, several researchers have used biopolymers and calcium phosphate salts (hydroxyapatite) as composites to be used in this area as drug releases, scaffolds, implants, among others. Different biopolymers can be suitable for this type of application, in this work we have described the most widely used biopolymers for biomedical purposes, such as alginate, collagen, gellan gum, chitosan, and polylactic acid, in addition to a detailed description of hydroxyapatite, biopolymers, as well as biopolymer/hydroxyapatite composites, to highlight their potential and the most relevant characteristics of these materials.
Downloads
References
El-Habashy SE, Eltaher HM, Gaballah A, Zaki EI, et al. Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis. Mater Sci Eng C [Internet]. 2021;119:111599. Available from: https://doi.org/10.1016/j.msec.2020.111599
Escobar Sierra D, Mesa Ospina D. Evaluación de recubrimientos de quitosano sobre cuerpos porosos de hidroxiapatita. Sci Tech [Internet]. 2019;24(1):161-172. Available from: https://doi.org/10.22517/23447214.20051
Chen J, Yu Q, Zhang G, Yang S, et al. Preparation and biocompatibility of nanohybrid scaffolds by in situ homogeneous formation of nano hydroxyapatite from biopolymer polyelectrolyte complex for bone repair applications. Colloids Surf B [Internet]. 2012;93:100–107. Available from: http://dx.doi.org/10.1016/j.colsurfb.2011.12.022
Chakravarty J, Rabbi MF, Chalivendra V, Ferreira T, et al. Mechanical and biological properties of chitin/polylactide (PLA)/hydroxyapatite (HAP) composites cast using ionic liquid solutions. Int J Biol Macromol [Internet]. 2020;151:1213–1223. Available from: https://doi.org/10.1016/j.ijbiomac.2019.10.168
Kalisz G, Przekora A, Kazimierczak P, Gieroba B, et al. Physicochemical changes of the chitosan/β-1,3-glucan/hydroxyapatite biocomposite caused by mesenchymal stem cells cultured on its surface in vitro. Spectrochim Acta A Mol Biomol [Internet]. 2021;251:119439. Available from: https://doi.org/10.1016/j.saa.2021.119439
Benedini L, Laiuppa J, Santillán G, Baldini M, et al. Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: Assessment of their bioactivity, biocompatibility, and antibacterial activity. Mater Sci Eng C [Internet]. 2020;115:111101. Available from: https://doi.org/10.1016/j.msec.2020.111101
Sathiyavimal S, Vasantharaj S, LewisOscar F, Selvaraj R, Brindhadevi K, Pugazhendhi A. Natural organic and inorganic–hydroxyapatite biopolymer composite for biomedical applications. Prog Org Coat [Internet]. 2020;147:105858. Available from: https://doi.org/10.1016/j.porgcoat.2020.105858
Lett AJ, Sagadevan S, Fatimah I, Hoque ME, et al. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur Polym [Internet]. 2021;148:110360. Available from: https://doi.org/10.1016/j.eurpolymj.2021.110360
Trakoolwannachai V, Kheolamai P, Ummartyotin S. Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Compos B Eng [Internet]. 2019;173:106974. Available from: https://doi.org/10.1016/j.compositesb.2019.106974
Williams RAD, Elliot JC. Bioquímica dental básica y aplicada. Distrito Federal, México: El Manual Moderno; 1990. 263p. Spanish.
Rahavi SS, Ghaderi O, Monshi A, Fathi MH. A comparative study on physicochemical properties of hydroxyapatite powders derived from natural and synthetic sources. Russ J Non-Ferrous Metals [Internet]. 2017;58(3):276–286. Available from: https://doi.org/10.3103/S1067821217030178
Giraldo-Betancur A, Espinosa-Arbelaez DG, del Real-López A, Millan-Malo BM, et al. Comparison of physicochemical properties of bio and commercial hydroxyapatite. Curr Appl Phys [Internet]. 2013;13(7):1383–1390. Available from: http://dx.doi.org/10.1016/j.cap.2013.04.019
Alvarez-Barreto J, Márquez K, Gallardo E, Moret J, et al. Mesenchymal Stem Cell Culture on Composite Hydrogels of Hydroxyapatite Nanoparticles and Photo-Crosslinking Chitosan. Rev Mex Ing Biom [Internet]. 2017;38(3):524-536. Available from: http://dx.doi.org/10.17488/RMIB.38.3.2
Rivera JA, Fetter G, Bosch P. Efecto del pH en la síntesis de hidroxiapatita en presencia de microondas. Rev Mater [Internet]. 2011;15(4):488-505. Available from: https://doi.org/10.1590/S1517-70762010000400003
Flores-Valdez JD, Sáenz-Galindo A, Múzquiz-Ramos EM, Soria Aguilar MJ. Biopolymers and applications. CienciAcierta [Internet]. 2021;(66):61–72. Available from: http://www.cienciacierta.uadec.mx/articulos/CC66/biopolimerosyaplicaciones.pdf
Sivakanthan S, Rajendran S, Gamage A, Madhujith T, et al. Antioxidant and antimicrobial applications of biopolymers: A review. Food Res Int [Internet]. 2020;136:109327. Available from: https://doi.org/10.1016/j.foodres.2020.109327
Lizundia E, Kundu D. Advances in Natural Biopolymer‐Based Electrolytes and Separators for Battery Applications. Adv Funct [Internet]. 2021;31(3):2005646. Available from: https://doi.org/10.1002/adfm.202005646
Hochmańska-Kaniewska P, Janiszewska D, Oleszek T. Enhancement of the properties of acrylic wood coatings with the use of biopolymers. Prog Org Coat [Internet]. 2022;162:106522. Available from: https://doi.org/10.1016/j.porgcoat.2021.106522
Tuan Naiwi TSR, Aung MM, Rayung M, Ahmad A, et al. Dielectric and ionic transport properties of bio-based polyurethane acrylate solid polymer electrolyte for application in electrochemical devices. Polym Test [Internet]. 2022;106:107459. Available from: https://doi.org/10.1016/j.polymertesting.2021.107459
Wan Mahari AW, Kee SH, Foong SY, Amelia TSM, et al. Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation. Renew Sustain Energy Rev [Internet]. 2022;153:111790. Available from: https://doi.org/10.1016/j.rser.2021.111790
Parveen FK. Recent Advances in Biopolymers [Internet]. London: IntechOpen; 2016. 288p. Available from: https://doi.org/10.5772/60630
Narain, R. Polymer Science and Nanotechnology Fundamentals and Applications [Internet]. United Kingdom: Elsevier; 2020. 488p. https://doi.org/10.1016/C2018-0-01134-2
Rebelo R, Fernandes M, Fangueiro R. Biopolymers in Medical Implants: A Brief Review. Procedia Eng [Internet]. 2017;200:236–243. Available from: https://doi.org/10.1016/j.proeng.2017.07.034
Hassan MES, Bai J, Dou D-Q. Biopolymers; Definition, Classification and Applications. Egypt J Chem [Internet]. 2019;62(9):133–145. Available from: https://dx.doi.org/10.21608/ejchem.2019.6967.1580
Ahmed S, Kanchi S, Kumar G. Handbook of Biopolymers: Advances and Multifaceted Applications. California: Jenny Stanford Publishing; 2018. 308p.
Dubinenko GE, Zinoviev AL, Bolbasov EN, Novikov VT, et al. Preparation of Poly(L-lactic acid)/Hydroxyapatite composite scaffolds by fused deposit modeling 3D printing. Mater Today Proc [Internet]. 2020;22:228–234. Available from: https://doi.org/10.1016/j.matpr.2019.08.092
Kumar PPP, Lim D-K. Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications. Pharmaceutics [Internet]. 2021;14(1):70. Available from: https://doi.org/10.3390/pharmaceutics14010070
Biswal T. Biopolymers for tissue engineering applications: A review. Mater Today Proc [Internet]. 2021;41:397–402. Available from: https/doi.org/10.1016/j.matpr.2020.09.628
Villareal Valdiviezo GP, Múzquiz Ramos EM, Farías Cepeda L. Medical applications of biopolymers. CienciAcierta [Internet]. 2020;63:83. Available from: http://www.cienciacierta.uadec.mx/articulos/CC63/83AplicacionesMedicas.pdf
Aboudi J, Arnold SM, Bednarcyk BA. Mechanics of Composite Materials [Internet]. 2nd ed. Butterworth-Heinemann: Elsevier; 2013. 984p. Available from: https://doi.org/10.1016/C2011-0-05224-9
Gay D, Hoa SV, Tsai SW. Composite Materials: Design and Applications. 1st ed. Florida: CRC Press; 2002. 552p.
Gibson RE. Principal of Composite Mechanics. 4th ed. Boca Raton: CRC Press; 2016. 700p.
Mohanty AK, Misra M, Drzal LT, Selke S, Harte B, Hinrichsen G. Natural Fibers, Biopolymers, and Biocomposites [Internet]. 1st ed. Boca Raton: CRC Press; 2005. 896p. Available from: https://doi.org/10.1201/9780203508206
Sankaran S, Ravishankar BN, Ravi Sekhar K, Dasgupta S, et al. Syntactic Foams for Multifunctional Applications. In: Kar, K (eds.). Composite Materials [Internet]. Berlin: Springer Berlin Heidelberg; 2017. 281–314p. Available from: https://doi.org/10.1007/978-3-662-49514-8_9
Holban AM, Grumezescu A (eds.). Materials for Biomedical Engineering: Hydrogels and Polymer-based Scaffolds [Internet]. Amsterdam, Oxford, Cambridge: Elsevier; 2019. 562p. Available from: https://doi.org/10.1016/C2017-0-04477-4
Moraes MA, Silva CF, Vieira RS (eds.). Biopolymers Membranes and Films Health, Food, Environment, and Energy Applications. Amsterdam, Oxford, Cambridge: Elsevier; 2020. 633p. Available from: https://doi.org/10.1016/C2018-0-02693-6
Benedini L, Laiuppa J, Santillán G, Baldini M, et al. Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: Assessment of their bioactivity, biocompatibility, and antibacterial activity. Mater Sci Eng C [Internet]. 2020;115:111101. Available from: https://doi.org/10.1016/j.msec.2020.111101
Wang L, Li Y, Li C. In situ processing and properties of nanostructured hydroxyapatite/alginate composite. J Nanopart Res [Internet]. 2009;11(3):691–699. Available from: https://doi.org/10.1007/s11051-008-9431-y
Chae T, Yang H, Leung V, Ko F, et al. Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration. J Mater Sci: Mater Med [Internet]. 2013;24(8):1885–1894. Available from: https://doi.org/10.1007/s10856-013-4957-7
Sukhodub LF, Sukhodub LB, Litsis O, Prylutskyy Y. Synthesis and characterization of hydroxyapatite-alginate nanostructured composites for the controlled drug release. Mater Chem Phys [Internet]. 2018;217:228–34. Available from: https://doi.org/10.1016/j.matchemphys.2018.06.071
Mahmoud EM, Sayed M, El-Kady AM, Elsayed H, et al. In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds. Int J Biol Macromol [Internet]. 2020;165:1346–1360. Available from: https://doi.org/10.1016/j.ijbiomac.2020.10.014
You F, Chen X, Cooper DML, Chang T, et al. Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting. Biofabricación [Internet]. 2018;11:015015. Available from: https://doi.org/10.1088/1758-5090/aaf44a
Ocando C, Dinescu S, Samoila I, Ghitulica CD, et al. Fabrication and properties of alginate-hydroxyapatite biocomposites as efficient biomaterials for bone regeneration. Eur Polym [Internet]. 2021;151:110444. Available from: https://doi.org/10.1016/j.eurpolymj.2021.110444
Sukhodub LF, Sukhodub LB, Pogrebnjak AD, Turlybekuly A, et al. Effect of magnetic particles adding into nanostructured hydroxyapatite–alginate composites for orthopedics. J Korean Ceram Soc [Internet]. 2020;57(5):557–569. Available from: https://doi.org/10.1007/s43207-020-00061-w
De Paula FL, Barreto IC, Rocha-Leão MH, Borojevic R, et al. Hydroxyapatite-alginate biocomposite promotes bone mineralization in different length scales in vivo. Front Mater Sci China. 2009;3(2):145–153. Available from: https://doi.org/10.1007/s11706-009-0029-9
González Paz R, Grillo A, Feijoo JL, Noris-Suárez K, et al. Estudio de Mezclas de Polietileno de Alta Densidad (PEAD) con colágeno/acetato de sodio e Hidroxiapatita (HA). In: Müller-Karger C, Wong S, La Cruz A. (eds). IV Latin American Congress on Biomedical Engineering 2007 [Internet]. Berlin: IFMBE Proceedings; 2008;18:676–680. Available from: https://doi.org/10.1007/978-3-540-74471-9_157
Yoruc ABH, Aydınoglu AK. Synthesis of Hydroxyapatite/Collagen (HA/COL) Composite Powder Using a Novel Precipitation Technique. Acta Phys Pol [Internet]. 2015;127(4):1264–1267. Available from: http://dx.doi.org/10.12693/APhysPolA.127.1264
Sukul M, Min Y-L, Lee B-T. Collagen-hydroxyapatite coated unprocessed cuttlefish bone as a bone substitute. Mater [Internet]. 2016;181:156–560. Available from: http://dx.doi.org/10.1016/j.matlet.2016.05.170
Lara-Rico R, Claudio-Rizo JA, Múzquiz-Ramos E, Lopez-Badillo CM. Hidrogeles de colágeno acoplados con hidroxiapatita para aplicaciones en ingeniería tisular. TIP Rev Espec Cienc Quim-Biol [Internet]. 2020;23:1–12. Available from: https://doi.org/10.22201/fesz.23958723e.2020.0.224
Cholas R, Padmanabhan SK, Gervaso F, Udayan G, et al. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Mater Sci Eng C [Internet]. 2016;63:499–505. Available from: http://dx.doi.org/10.1016/j.msec.2016.03.022
Bhuiyan D, Jablonsky MJ, Kolesov I, Middleton J, et al. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles. Acta Biomater [Internet]. 2015;15:181–190. Available from: http://dx.doi.org/10.1016/j.actbio.2014.11.044
Sun R-X, Lv Y, Niu Y-R, Zhao X-H, et al. Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders. Ceram Int [Internet]. 2017;43(18):16792–16798. Available from: http://dx.doi.org/10.1016/j.ceramint.2017.09.075
Becerra J, Rodriguez M, Leal D, Noris-Suarez K, et al. Chitosan-collagen-hydroxyapatite membranes for tissue engineering. J Mater Sci: Mater Med [Internet]. 2022;33(2):18. Available from: https://doi.org/10.1007/s10856-022-06643-w
Zhao X, Li H, Xu Z, Li K, et al. Selective preparation and characterization of nano-hydroxyapatite/collagen coatings with three-dimensional network structure. Surf Coat Technol [Internet]. 2017;322:227–237. Available from: http://dx.doi.org/10.1016/j.surfcoat.2017.05.042
Kaczmarek B, Sionkowska A, Osyczka AM. Physicochemical properties of scaffolds based on mixtures of chitosan, collagen and glycosaminoglycans with nano-hydroxyapatite addition. Int J Biol Macromol [Internet]. 2018;118:1880–1883. Available from: https://doi.org/10.1016/j.ijbiomac.2018.07.035
Kaczmarek B, Sionkowska A, Gołyńska M, Polkowska I, et al. In vivo study on scaffolds based on chitosan, collagen, and hyaluronic acid with hydroxyapatite. Int J Biol Macromol [Internet]. 2018;118:938–944. Available from: https://doi.org/10.1016/j.ijbiomac.2018.06.175
Kikuchi M, Itoh S, Ichinose S, Shinomiya K, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials [Internet]. 2001;22(13):1705–1711. Available from: https://doi.org/10.1016/S0142-9612(00)00305-7
Dou DD, Zhou G, Liu HW, Zhang J, et al. Sequential releasing of VEGF and BMP-2 in hydroxyapatite collagen scaffolds for bone tissue engineering: Design and characterization. Int J Biol Macromol [Internet]. 2019;123:622–628. Available from: https://doi.org/10.1016/j.ijbiomac.2018.11.099
Taniyama T, Masaoka T, Yamada T, Wei X, et al. Repair of Osteochondral Defects in a Rabbit Model Using a Porous Hydroxyapatite Collagen Composite Impregnated With Bone Morphogenetic Protein-2. Artif Organs [Internet]. 2015;39(6):529–535. Available from: https://doi.org/10.1111/aor.12409
Osmałek T, Froelich A, Tasarek S. Application of gellan gum in pharmacy and medicine. Int J Pharm. 2014;466(1–2):328–340. Available from: https://doi.org/10.1016/j.ijpharm.2014.03.038
Zare EN, Makvandi P, Borzacchiello A, Tay FR, et al. Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem Commun [Internet]. 2019;55(99):14871–14885. Available from: https://doi.org/10.1039/C9CC08207G
Santos MVB, Oliveira AL, Osajima JA, Silva-Filho EC. Development of composites scaffolds with calcium and cerium-hydroxyapatite and gellan gum. Ceram Int [Internet]. 2020;46(3):3811–3817. Available from: https://doi.org/10.1016/j.ceramint.2019.10.104
Rajesh R, Ravichandran YD, Reddy MJK, Ryu SH, et al. Development of functionalized multi-walled carbon nanotube-based polysaccharide–hydroxyapatite scaffolds for bone tissue engineering. RSC Adv [Internet]. 2016;6(85):82385–82393. Available from: http://dx.doi.org/10.1039/C6RA16709H
Manda MG, da Silva LP, Cerqueira MT, Pereira DR, et al. Gellan gum-hydroxyapatite composite spongy-like hydrogels for bone tissue engineering. J Biomed Mater Res A [Internet]. 2018;106(2):479–490. Available from: https://doi.org/10.1002/jbm.a.36248
Vieira S, da Silva Morais A, Garet E, Silva-Correia J, et al. Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering. Acta Biomater [Internet]. 2019;93:74–85. Available from: https://doi.org/10.1016/j.actbio.2019.01.053
Shin H, Olsen BD, Khademhosseini A. Gellan gum microgel-reinforced cell-laden gelatin hydrogels. J Mater Chem B [Internet]. 2014;2(17):2508–2516. Available from: https://doi.org/10.1039/C3TB20984A
Nayak AK, Alkahtani S, Hasnain MS. Jackfruit Seed Starch-Based Composite Beads for Controlled Drug Release. In: Nayak AK, Alkahtani S, Hasnain MS (eds). Polymeric and Natural Composites. Advances in Material Research and Technology [Internet]. Springer Cham ;2022. 213-240p. Available from: https://doi.org/10.1007/978-3-030-70266-3_7
Xu L, Bai X, Yang J, Li J, et al. Preparation and characterisation of a gellan gum-based hydrogel enabling osteogenesis and inhibiting Enterococcus faecalis. Int J Biol Macromol [Internet]. 2020;165:2964–2973. Available from: https://doi.org/10.1016/j.ijbiomac.2020.10.083
Pereira DR, Canadas RF, Silva-Correia J, da Silva Morais A, et al. Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites for osteochondral tissue regeneration. Appl Mater Today [Internet]. 2018;12:309–321. Available from: https://doi.org/10.1016/j.apmt.2018.06.005
Altieri MA, Nicholls CI. Agroecology Scaling Up for Food Sovereignty and Resiliency. Lichtfouse E (eds). Sustainable Agriculture Reviews [Internet]. Dordrecht: Springer Dordrecht; 2012. 1–29 p. Available from: https://doi.org/10.1007/978-94-007-5449-2
Ahmed S, Ikram S. Chitosan: Derivatives, Composites and Applications. Hoboken: Wiley; 2017. 516p.
Thomas MS, Koshy RR, Mary SK, Thomas S, et al. Starch, Chitin and Chitosan Based Composites and Nanocomposites [Internet]. Springer Cham; 2019. 57p. Available from: https://doi.org/10.1007/978-3-030-03158-9
Shakir M, Jolly R, Khan AA, Ahmed SS, et al. Resol based chitosan/nano-hydroxyapatite nanoensemble for effective bone tissue engineering. Carbohydr Polym [Internet]. 2018;179:317–327. Available from: http://dx.doi.org/10.1016/j.carbpol.2017.09.103
Shen J, Jin B, Qi Y-C, Jiang Q, et al. Carboxylated chitosan/silver-hydroxyapatite hybrid microspheres with improved antibacterial activity and cytocompatibility. Mater Sci Eng C [Internet]. 2017;78:589–597. Available from: http://dx.doi.org/10.1016/j.msec.2017.03.100
Costa-Pinto AR, Lemos AL, Tavaria FK, Pintado M. Chitosan and Hydroxyapatite Based Biomaterials to Circumvent Periprosthetic Joint Infections. Materials [Internet]. 2021;14(4):804. Available from: https://doi.org/10.3390/ma14040804
Li L, Iqbal J, Zhu Y, Zhang P, et al. Chitosan/Ag-hydroxyapatite nanocomposite beads as a potential adsorbent for the efficient removal of toxic aquatic pollutants. Int J Biol Macromol [Internet]. 2018;120:1752–1759. Available from: https://doi.org/10.1016/j.ijbiomac.2018.09.190
Nabipour H, Wang X, Song L, Hu Y. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Carbohydr Polym [Internet]. 2020;246:116641. Available from: https://doi.org/10.1016/j.carbpol.2020.116641
Alvarez-Barreto J, Máquez K, Gallardo E, Moret J, et al. Mesenchymal Stem Cell Culture on Composite Hydrogels of Hydroxyapatite Nanoparticles and Photo-Crosslinking Chitosan. Rev Mex Ing Biom [Internet]. 2017;38(3):524-536. Available from: https://doi.org/10.17488/RMIB.38.3.2
Trakoolwannachai V, Kheolamai P, Ummartyotin S. Development of hydroxyapatite from eggshell waste and a chitosan-based composite: In vitro behavior of human osteoblast-like cell (Saos-2) cultures. Int J Biol Macromol [Internet]. 2019;134:557–564. Available from: https://doi.org/10.1016/j.ijbiomac.2019.05.004
Tripathi A, Saravanan S, Pattnaik S, Moorthi A, et al. Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper–zinc for bone tissue engineering. Int J Biol Macromol [Internet]. 2012;50(1):294–299. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2011.11.013
Soriente A, Fasolino I, Gomez-Sánchez A, Prokhorov E, et al. Chitosan/hydroxyapatite nanocomposite scaffolds to modulate osteogenic and inflammatory response. J Biomed Mater Res Part A [Internet]. 2022;110(2):266–272. Available from: https://doi.org/10.1002/jbm.a.37283
Kaczmarek B, Sionkowska A, Skopinska-Wisniewska J. Influence of glycosaminoglycans on the properties of thin films based on chitosan/collagen blends. J Mech Behav Biomed Mater [Internet]. 2018;80:189–193. Available from: https://doi.org/10.1016/j.jmbbm.2018.02.006
Okada T, Nobunaga Y, Konishi T, Yoshioka T, et al. Preparation of chitosan-hydroxyapatite composite mono-fiber using coagulation method and their mechanical properties. Carbohydr Polym [Internet]. 2017;175:355–360. Available from: http://dx.doi.org/10.1016/j.carbpol.2017.07.072
Balagangadharan K, Chandran SV, Arumugam B, Saravanan S, et al. Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. Int J Biol Macromol [Internet]. 2018;111:953–958. Available from: https://doi.org/10.1016/j.ijbiomac.2018.01.122
Chakravarty J, Rabbi MF, Chalivendra V, Ferreira T, et al. Mechanical and biological properties of chitin/polylactide (PLA)/hydroxyapatite (HAP) composites cast using ionic liquid solutions. Int J Biol Macromol [Internet]. 2020;151:1213–1223. Available from: https://doi.org/10.1016/j.ijbiomac.2019.10.168
Akindoyo JO, Beg MDH, Ghazali S, Heim HP, et al. Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites. Compos Part A Appl Sci Manuf [Internet]. 2017;103:96–105. Available from: http://dx.doi.org/10.1016/j.compositesa.2017.09.013
Grémare A, Guduric V, Bareille R, Heroguez V, et al. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res Part A [Internet]. 2018;106(4):887–894. Available from: https://doi.org/10.1002/jbm.a.36289
Akindoyo JO, Beg MDH, Ghazali S, Heim HP, et al. Impact modified PLA-hydroxyapatite composites – Thermo-mechanical properties. Compos Part A Appl Sci Manuf [Internet]. 2018;107:326–333. Available from: https://doi.org/10.1016/j.compositesa.2018.01.017
Armentano I, Bitinis N, Fortunati E, Mattioli S, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci [Internet]. 2013;38(10-11):1720–1747. Available from: http://dx.doi.org/10.1016/j.progpolymsci.2013.05.010
Mohammadi MS, Bureau MN, Nazhat SN. Polylactic acid (PLA) biomedical foams for tissue engineering. In: Netti PA (eds). Biomedical Foams for Tissue Engineering Applications [Internet]. United Kingdom: Elsevier; 2014. 313–334. Available from: https://doi.org/10.1533/9780857097033.2.313
Esposito Corcione C, Gervaso F, Scalera F, Padmanabhan SK, et al. Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceram Int [Internet]. 2019;45(2):2803–2810. Available from: https://doi.org/10.1016/j.ceramint.2018.07.297
Mondal S, Nguyen TP, Hiệp PV, Hoang G, et al. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int [Internet]. 2020;46(3):3443–3455. Available from: https://doi.org/10.1016/j.ceramint.2019.10.057
Talal A, Waheed N, Al-Masri M, McKay IJ, et al. Absorption and release of protein from hydroxyapatite-polylactic acid (HA-PLA) membranes. J Dent [Internet]. 2009;37(11):820–826. Available from: https://doi.org/10.1016/j.jdent.2009.06.014
Thanh DTM, Trang PTT, Thom NT, Phuong NT, et al. Effects of Porogen on Structure and Properties of Poly Lactic Acid/Hydroxyapatite Nanocomposites (PLA/HAp). J Nanosci Nanotechnol [Internet]. 2016;16(9):9450–9459. Available from: https://doi.org/10.1166/jnn.2016.12032
Zhang H, Fu Q-W, Sun T-W, Chen F, et al. Amorphous calcium phosphate, hydroxyapatite and poly(D,L-lactic acid) composite nanofibers: Electrospinning preparation, mineralization and in vivo bone defect repair. Colloids Surf B [Internet]. 2015;136:27–36. Available from: http://dx.doi.org/10.1016/j.colsurfb.2015.08.015
Moura NKd, Siqueira IAWB, Machado JPdB, Kido HW, et al. Production and Characterization of Porous Polymeric Membranes of PLA/PCL Blends with the Addition of Hydroxyapatite. J Compos Sci [Internet]. 2019;3(2):45. Available from: https://doi.org/10.3390/jcs3020045
Zhang J, Wang Q, Wang A. In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomater [Internet]. 2010;6(2):445–454. Available from: http://dx.doi.org/10.1016/j.actbio.2009.07.001
Sukhodub LF, Sukhodub LB, Litsis O, Prylutskyy Y. Synthesis and characterization of hydroxyapatite-alginate nanostructured composites for the controlled drug release. Mater Chem Phys [Internet]. 2018;217:228–234. Available from: https://doi.org/10.1016/j.matchemphys.2018.06.071
Rossi AL, Barreto IC, Maciel WQ, Rosa FP, et al. Ultrastructure of regenerated bone mineral surrounding hydroxyapatite–alginate composite and sintered hydroxyapatite. Bone [Internet]. 2012;50(1):301–310. Available from: http://dx.doi.org/10.1016/j.bone.2011.10.022
Rajkumar M, Meenakshisundaram N, Rajendran V. Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation. Mater Charact [Internet]. 2011;62(5):469–479. Available from: http://dx.doi.org/10.1016/j.matchar.2011.02.008
Rajesh R, Ravichandran YD. Development of a new carbon nanotube–alginate–hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering. Int J Nanomedicine [Internet]. 2015;10:7-15. Available from: https://doi.org/10.2147/IJN.S79971
Mahmoud EM, Sayed M, El-Kady AM, Elsayed H, et al. In vitro and in vivo study of naturally derived alginate / hydroxyapatite bio composite scaffolds. Int J Biol Macromol [Internet]. 2020;165:1346–1360. Available from: https://doi.org/10.1016/j.ijbiomac.2020.10.014
Gholizadeh BS, Buazar F, Hosseini SM, Mousavi SM. Enhanced antibacterial activity, mechanical and physical properties of alginate/hydroxyapatite bionanocomposite film. Int J Biol Macromol [Internet]. 2018;116:786–792. Available from: https://doi.org/10.1016/j.ijbiomac.2018.05.104
Bian T, Xing H. A collagen (Col)/nano-hydroxyapatite (nHA) biological composite bone scaffold with double multi-level interface reinforcement. Arab J Chem [Internet]. 2022;15(5):103733. Available from: https://doi.org/10.1016/j.arabjc.2022.103733
Bian T, Zhao K, Meng Q, Tang Y, et al. The construction and performance of multi-level hierarchical hydroxyapatite (HA)/ collagen composite implant based on biomimetic bone Haversian motif. Mater Des [Internet]. 2019;162:60–69. Available from: https://doi.org/10.1016/j.matdes.2018.11.040
Yilmaz E, Çakıroğlu B, Gökçe A, Findik F, et al. Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition. Mater Sci Eng C [Internet]. 2019;101:292–305. Available from: https://doi.org/10.1016/j.msec.2019.03.078
Sun R-X, Lv Y, Niu Y-R, Zhao X-H, et al. Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders. Ceram Int [Internet]. 2017;43(18):16792–16798. Available from: http://dx.doi.org/10.1016/j.ceramint.2017.09.075
Li H, Sun X, Li Y, Wang H, et al. Carbon nanotube-collagen@hydroxyapatite composites with improved mechanical and biological properties fabricated by a multi in situ synthesis process. Biomed Microdevices [Internet]. 2020;22:64. Available from: https://doi.org/10.1007/s10544-020-00520-5
Siswanto S, Hikmawati D, Kulsum U, Rudyardjo DI, et al. Biocompatibility and osteoconductivity of scaffold porous composite collagen–hydroxyapatite based coral for bone regeneration. Open Chem [Internet]. 2020;18(1):584–590. Available from: https://doi.org/10.1515/chem-2020-0080
Kane RJ, Weiss-Bilka HE, Meagher MJ, Liu Y, et al. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomater [Internet]. 2015;17:16–25. Available from: http://dx.doi.org/10.1016/j.actbio.2015.01.031
Sionkowska A, Kozłowska J. Properties and modification of porous 3-D collagen/hydroxyapatite composites. Int J Biol Macromol [Internet]. 2013;52(1):250–259. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2012.10.002
Zvicer J, Medic A, Veljovic D, Jevtic S, et al. Biomimetic characterization reveals enhancement of hydroxyapatite formation by fluid flow in gellan gum and bioactive glass composite scaffolds. Polym Test [Internet]. 2019;76:464–472. Available from: https://doi.org/10.1016/j.polymertesting.2019.04.004
Bastos AR, Raquel Maia F, Miguel Oliveira J, Reis RL, et al. Influence of gellan gum-hydroxyapatite spongy-like hydrogels on human osteoblasts under long-term osteogenic differentiation conditions. Mater Sci Eng C [Internet]. 2021;129:112413. Available from: https://doi.org/10.1016/j.msec.2021.112413
Anandan D, Madhumathi G, Nambiraj NA, Jaiswal AK. Gum based 3D composite scaffolds for bone tissue engineering applications. Carbohydr Polym [Internet]. 2019;214:62–70. Available from: https://doi.org/10.1016/j.carbpol.2019.03.020
Jamshidi P, Chouhan G, Williams RL, Cox SC, et al. Modification of gellan gum with nanocrystalline hydroxyapatite facilitates cell expansion and spontaneous osteogenesis. Biotechnol Bioeng [Internet]. 2016;113(7):1568–1576. Available from: https://doi.org/10.1002/bit.25915
Manda MG, da Silva LP, Cerqueira MT, Pereira DR, et al. Gellan gum-hydroxyapatite composite spongy-like hydrogels for bone tissue engineering. J Biomed Mater Res Part A [Internet]. 2018;106(2):479–490. Available from: https://doi.org/10.1002/jbm.a.36248
dos Santos MVB, Bastos Nogueira Rocha L, Gomes Vieira E, Leite Oliveira A, et al. Development of Composite Scaffolds Based on Cerium Doped-Hydroxyapatite and Natural Gums—Biological and Mechanical Properties. Materials [Internet]. 2019;12(15):2389. Available from: https://doi.org/10.3390/ma12152389
Heidari F, Razavi M, E.Bahrololoom M, Bazargan-Lari R, et al. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Mater Sci Eng C [Internet]. 2016;65:338–344. Available from: http://dx.doi.org/10.1016/j.msec.2016.04.039
Shavandi A, Bekhit AE-DA, Ali MA, Sun Z, et al. Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Mater Sci Eng C [Internet]. 2015;56:481–493. Available from: http://dx.doi.org/10.1016/j.msec.2015.07.004
Ghosh S, Ghosh S, Pramanik N. Bio-evaluation of doxorubicin (DOX)-incorporated hydroxyapatite (HAp)-chitosan (CS) nanocomposite triggered on osteosarcoma cells. Adv Compos Hybrid Mater [Internet]. 2020;3(3):303–314. Available from: https://doi.org/10.1007/s42114-020-00154-4
Gritsch L, Maqbool M, Mouriño V, Ciraldo FE, et al. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium. J Mater Chem B [Internet]. 2019;7(40):6109–6124. Available from: https://doi.org/10.1039/C9TB00897G
Chen L, Hu J, Shen X, Tong H. Synthesis and characterization of chitosan–multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering. J Mater Sci: Mater Med [Internet]. 2013;24(8):1843–1851. Available from: https://doi.org/10.1007/s10856-013-4954-x
Li X, Nan K, Shi S, Chen H. Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Int J Biol Macromol [Internet]. 2012;50(1):43–49. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2011.09.021
Saravanan S, Nethala S, Pattnaik S, Tripathi A, et al. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol [Internet]. 2011;49(2):188–193. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2011.04.010
Zhang J, Nie J, Zhang Q, Li Y, et al. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. J Biomater Sci Polym Ed [Internet]. 2014;25(1):61–74. Available from: https://doi.org/10.1080/09205063.2013.836950
Carfì Pavia F, Conoscenti G, Greco S, La Carrubba V, et al. Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering. Int J Biol Macromol [Internet]. 2018;119:945–953. Available from: https://doi.org/10.1016/j.ijbiomac.2018.08.007
Ma B, Han J, Zhang S, Liu F, et al. Hydroxyapatite nanobelt/polylactic acid Janus membrane with osteoinduction/barrier dual functions for precise bone defect repair. Acta Biomater [Internet]. 2018;71:108–117. Available from: https://doi.org/10.1016/j.actbio.2018.02.033
Anita Lett J, Sagadevan S, Paiman S, Mohammad F, et al. Exploring the thumbprints of Ag-hydroxyapatite composite as a surface coating bone material for the implants. J Mater Res Technol [Internet]. 2020;9(6):12824–12833. Available from: https://doi.org/10.1016/j.jmrt.2020.09.037
Chuan D, Fan R, Wang Y, Ren Y, et al. Stereocomplex poly(lactic acid)-based composite nanofiber membranes with highly dispersed hydroxyapatite for potential bone tissue engineering. Compos Sci Technol [Internet]. 2020;192:108107. Available from: https://doi.org/10.1016/j.compscitech.2020.108107
Zare RN, Doustkhah E, Assadi MHN. Three-dimensional bone printing using hydroxyapatite-PLA composite. Mater Today Proc [Internet]. 2021;42(3):1531–1533. Available from: https://doi.org/10.1016/j.matpr.2019.12.046
Alksne M, Kalvaityte M, Simoliunas E, Rinkunaite I, et al. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. J Mech Behav Biomed Mater [Internet]. 2020;104:103641. Available from: https://doi.org/10.1016/j.jmbbm.2020.103641
Zhang H, Mao X, Zhao D, Jiang W, et al. Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: An in vivo bioreactor model. Sci Rep [Internet]. 2017;7(1):15255. Available from: http://dx.doi.org/10.1038/s41598-017-14923-7
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ingeniería Biomédica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.