Classification of Daily Living Activities in subjects with Parkinson’s Disease using Artificial Neural Networks
DOI:
https://doi.org/10.17488/RMIB.44.4.9Keywords:
artificial neural network, Parkinson’s disease, PCAAbstract
This paper is a proposal to contribute with health specialists to enrich the follow-up and support systems in patients with Parkinson's by identifying and classifying Daily Living Activities (DLAs) using Artificial Neural Networks programmed in Python language. The proposed method of supervised learning allowed the classification of 6 DLAs through 22 signals obtained from the application of Principal Component Analysis, creating a database used to train a Multilayer Perceptron. This model achieved an approximation of classification with 93% of the F1-score. The present study demonstrates the versatility of ANNs based on MLP combined with the PCA technique since, even in an unbalanced database such as the one used, it allows excellent values to be achieved in the F1-score measure. The use of Artificial Intelligence and other tools applied in this work may eventually help specialists to perform a more accurate assessment in the monitoring of rehabilitation for patients with Parkinson's disease by improving records and thus avoiding subjectivity in the interpretation of treatment results.
Downloads
References
A.-E. Gómez Ayala, “Enfermedad de Parkinson,” Offarm, vol. 26, no. 5, pp. 70–78, 2007. [En línea]. Recuperado de: https://www.elsevier.es/es-revista-offarm-4-articulo-enfermedad-parkinson-13102417
R. Martínez-Fernández, C. Gasca-Salas, A. Sánchez-Ferro, J. A. Obeso, “Actualización en la Enfermedad de Parkinson,” Rev. Med. Clin. Las Condes, vol. 27, no. 3, pp. 363–379, 2016.
J. Quinzaños-Fresnedo y A. I. Pérez San Pablo, “Rehabilitación del Paciente Con Enfermedad de Parkinson,” Bol. Méd. Inform. Inst. Nac. Rehab., no. 79, pp. 2–25, 2021. [En línea]. Disponible en: https://www.inr.gob.mx/Descargas/boletin/079Boletin.pdf
L. Borzì, M. Varrecchia, G. Olmo, C. A. Artusi, et al., “Home monitoring of motor fluctuations in Parkinson’s disease patients,” J. Reliable Intell. Environ., vol. 5, no. 3, pp. 145–162, 2019, doi: https://doi.org/10.1007/s40860-019-00086-x
M. Barrachina-Fernández, A. M. Maitín, C. Sánchez-Ávila, J. P. Romero, “Wearable Technology to Detect Motor Fluctuations in Parkinson’s Disease Patients: Current State and Challenges,” Sensors, vol. 21, no. 12, art. no. 4188, 2021, doi: https://doi.org/10.3390/s21124188
M. A. Hobert, W. Maetzler, K. Aminian, L. Chiari, “Technical and clinical view on ambulatory assessment in Parkinson's disease,” Acta Neurol. Scand., vol. 130, no. 3, pp. 139–147, 2014, doi: https://doi.org/10.1111/ane.12248
F. M. Rast y R. Labruyère, “Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments,” J. NeuroEngineering Rehabil., vol. 17, no. 1, art. no. 148, 2020, doi: https://doi.org/10.1186/s12984-020-00779-y
S. Jung, M. Michaud, L. Oudre, E. Dorveaux, L. Gorintin, N. Vayatis, D. Ricard, “The Use of Inertial Measurement Units for the Study of Free Living Environment Activity Assessment: A Literature Review,” Sensors, vol. 20, no. 19, art. no. 5625, 2020, doi: https://doi.org/10.3390/s20195625
A. I. Pérez Sanpablo, A. Meneses Peñaloza, J. Quinzaños Fresnedo, V. Bueyes Roiz, I. Quiñones Uriostegui, C. Hernandez Arenas, “Accuracy of discriminant analysis methods to classify activities of subjects with Parkinson’s Disease using wearable sensors,” Arch. Phys. Med. Rehab., vol. 102, no. 10, art. no. e103, 2021, doi: https://doi.org/10.1016/j.apmr.2021.07.797
H. Nguyen, K. Lebel, S. Bogard, E. Goubault, P. Boissy, C. Duval, “Using Inertial Sensors to Automatically Detect and Segment Activities of Daily Living in People With Parkinson’s Disease,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 1, pp. 197–204, 2018, doi: https://doi.org/10.1109/TNSRE.2017.2745418
A. Rana, A. Dumka, R. Singh, M. K. Panda, N. Priyadarshi, B. Twala, “Imperative Role of Machine Learning Algorithm for Detection of Parkinson’s Disease: Review, Challenges and Recommendations,” Diagnostics, vol. 12, no. 8, art. no. 2003, 2022, doi: https://doi.org/10.3390/diagnostics12082003
M. Awais, L. Chiari, E. A. F. Ihlen, J. L. Helbostad, L. Palmerini, “Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification,” Sensors, vol. 21, no. 14, art. no. 4669, 2021, doi: https://doi.org/10.3390/s21144669
L. R. Montero, J. A. Bastian, A. I. P. SanPablo, “Classification of Activities of Daily Living in Subjects with Parkinson’s Disease using Artificial Neural Networks,” en 2023 Global Medical Engineering Physics Exchanges/Pacific Health Care Engineering (GMEPE/PAHCE), Songdo, Korea, Republic of, 2023, pp. 1–5, doi: https://doi.org/10.1109/GMEPE/PAHCE58559.2023.10226479
N. González García y A. Taborda Londoño, “Análisis de Componentes Principales Sparse, Formulación, algoritmos e implicaciones en análisis de datos,” Tesis de maestría, Univ. Sal., Salamanca, España, 2015. [En línea]. Disponible en: https://gredos.usal.es/bitstream/handle/10366/126046/TFM_MAADM_Gonz%C3%A1lez_Taborda.pdf?sequence=4
I. T. Jollife y J. Cadima, “Principal component analysis: A review and recent developments,” Philos. Trans. A Math. Phys. Eng. Sci., vol. 374, art. no. 2065, 2016, doi: https://doi.org/10.1098/rsta.2015.0202
U. Dillmann, C. Holzhoffer, Y. Johann, S. Bechtel, et al., “Principal Component Analysis of gait in Parkinson’s disease: relevance of gait velocity,” Gait Posture, vol. 39, no. 3, pp. 882–887, 2014, doi: https://doi.org/10.1016/j.gaitpost.2013.11.021
T. Varrecchia, S. F. Castiglia, A. Ranavolo, C. Conte, et al., “An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters,” PLoS ONE, vol. 16, no. 2, 2021, art. no. e0244396, 2021, doi: https://doi.org/10.1371/journal.pone.0244396
A. Rana, A. S. Rawat, A. Bijalwan, H. Bahuguna, “Application of Multi Layer (Perceptron) Artificial Neural Network in the Diagnosis System: A Systematic Review,” 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE), San Salvador, El Salvador, 2018, pp. 1–6, doi: https://doi.org/10.1109/RICE.2018.8509069
A. D. Pano-Azucena, E. Tlelo-Cuautle, S. X.-D. Tan, B. Ovilla-Martinez, L. G. De la Fraga, “FPGA-Based Implementation of a Multilayer Perceptron Suitable for Chaotic Time Series Prediction,” Technologies, vol. 6, no. 4, art. no. 90, 2018, doi: https://doi.org/10.3390/technologies6040090
J. Zou, Y. Han, S. S. So, “Overview of artificial neural networks,” Methods Mol. Biol., vol. 458, pp. 15–23, 2008, doi: https://doi.org/10.1007/978-1-60327-101-1_2
G. AlMahadin, A. Lotfi, M. M. Carthy, P. Breedon, “Enhanced Parkinson’s Disease Tremor Severity Classification by Combining Signal Processing with Resampling Techniques,” SN Comp. Sci., vol. 3, art. no. 63, 2022, doi: https://doi.org/10.1007/s42979-021-00953-6
L. Sigcha, B. Domínguez, L. Borzì, N. Costa, et al., “Bradykinesia Detection in Parkinson’s Disease Using Smartwatches’ Inertial Sensors and Deep Learning Methods,” Electronics, vol. 11, no. 23, art. no. 3879, 2022, doi: https://doi.org/10.3390/electronics11233879
R. LeMoyne, T. Mastroianni, D. Whiting, N. Tomycz, “Preliminary Network Centric Therapy for Machine Learning Classification of Deep Brain Stimulation Status for the Treatment of Parkinson’s Disease with a Conformal Wearable and Wireless Inertial Sensor,” Adv. Parkinson’s Dis., vol. 8, no. 4, pp. 75–91, 2019, doi: https://doi.org/10.4236/apd.2019.84007
A. Fred Agarap, “Deep Learning using Rectified Linear Units (ReLU),” 2018, arXiv: 1803.08375, doi: https://doi.org/10.48550/arXiv.1803.08375
J. Lederer, “Activation Functions in Artificial Neural Networks: A Systematic Overview,” 2021, arXiv: 2101.09957, doi: https://doi.org/10.48550/arXiv.2101.09957
J. P. Larsen, E. Dupont, E. Tandberg, “Clinical diagnosis of Parkinson’s disease. Proposal of diagnostic subgroups classified at different levels of confidence,” Acta Neurol. Scand., vol. 89, no. 4, pp. 242–251, 2009, doi: https://doi.org/10.1111/j.1600-0404.1994.tb01674.x
C. Sweeney, E. Ennis, M. Mulvenna, R. Bond, S. O’Neill, “How Machine Learning Classification Accuracy Changes in a Happiness Dataset with Different Demographic Groups,” Computers, vol. 11, no. 5, art. no. 83, 2022, doi: https://doi.org/10.3390/computers11050083
M. Greenacre, P. J. F. Groenen, T. Hastie, A. I. D’Enza, A. Markos, E. Tuzhilina, “Principal component analysis,” Nat. Rev. Methods Primers, vol. 2, art. no. 100, 2022, doi: https://doi.org/10.1038/s43586-022-00184-w
N. Japkowicz, “Assessment Metrics for Imbalanced Learning,” en Imbalanced Learning: Foundations, Algorithms, and Applications, H. He y Y. Ma, Eds., Hoboken, New Jersey, Estados Unidos: Wiley, 2013, cap. 8, pp. 187–206, doi: https://doi.org/10.1002/9781118646106.ch8
M. Bekkar, H. K. Djemaa, T. A. Alitouche, “Evaluation Measures for Models Assessment over Imbalanced Data Sets,” J. Inf. Eng. Appl., vol. 3, no. 10, pp. 27–38, 2013, [Online]. Disponible en: https://www.iiste.org/Journals/index.php/JIEA/article/view/7633/8051
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Mexicana de Ingenieria Biomedica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.