Cicatrización de Heridas Tratadas con Hidrogeles de Quitosano con Extractos de Aloe vera y Calendula officinalis
DOI:
https://doi.org/10.17488/RMIB.43.1.2Palabras clave:
Aloe vera, Calendula officinalis, Quitosano, Herida diabética, Modelo animalResumen
El propósito de este proyecto fue evaluar los efectos curativos de los hidrogeles de quitosano con extractos de Aloe vera (CS + AV) y Calendula officinalis (CS + CO) en heridas en ratas Wistar diabéticas y no diabéticas. Se utilizaron un total de 24 ratas; los animales fueron divididos aleatoriamente en tres grupos diabéticos y tres no diabéticos (un grupo control y dos tratados) y se monitorearon durante 13 días. Se recuperó una biopsia del sitio de la herida para evaluar el contenido de colágeno y n-acetilglucosamina. El área de la herida se redujo desde el día 1 en ambos grupos no diabéticos tratados. Se observó un efecto similar en el grupo diabético tratado con CS + AV, mientras que el grupo diabético tratado con CS + CO mostró una reducción del área de la herida en comparación al control diabético hasta el día 11 después de la creación de la herida. El contenido de colágeno y n-acetilglucosamina fue mayor en todos los grupos tratados. Se necesitan más estudios para aclarar los mecanismos subyacentes a través de los cuales los estos tratamientos promueven la cicatrización de heridas. Estos resultados sugieren que los hidrogeles preparados son materiales con potencial para usarse como apósitos para heridas.
Descargas
Citas
Amin N, Doupis J. Diabeti Amin N, Doupis J. Diabetic foot disease: From the evaluation of the “foot at risk” to the novel diabetic ulcer treatment modalities. World J Diabetes [Internet]. 2016;7(7):153-164. Available from: https://doi.org/10.4239/wjd.v7.i7.153
Amoah VMK, Anokye R, Acheampong E, Dadson HR, et al. The experiences of people with diabetes-related lower limb amputation at the Komfo Anokye Teaching Hospital (KATH) in Ghana. BMC Res Notes [Internet]. 2018;11:66. Available from: https://doi.org/10.1186/s13104-018-3176-1
Dwita LP, Hasanah F, Srirustami R, Repi, et al. Wound healing properties of Epiphyllum oxypetalum (DC.) Haw. leaf extract in streptozotocin-induced diabetic mice by topical application. Wound Med [Internet]. 2019;26(1):100160. Available from: https://doi.org/10.1016/j.wndm.2019.100160
Guillamat-Prats R. The Role of MSC in Wound Healing, Scarring and Regeneration. Cells [Internet]. 2021;10(7):1729. Available from: http://dx.doi.org/10.3390/cells10071729
Cañedo-Dorantes L, Cañedo-Ayala M. Skin Acute Wound Healing: A Comprehensive review. Int J Inflam [Internet]. 2019;2019:3706315. Available from: https://doi.org/10.1155/2019/3706315
Gushiken LFS, Beserra FP, Bastos JK, Jackson CJ, et al. Cutaneous Wound Healing: An Update from Physiopathology to Current Therapies. Life (Basel) [Internet]. 2021;11(7):665. Available from: https://dx.doi.org/10.3390%2Flife11070665
Zhao R, Liang H, Clarke E, Jackson C, et al. Inflammation in Chronic Wounds. Int J Mol Sci [Internet]. 2016;17(12):2085. Available from: https://doi.org/10.3390/ijms17122085
Ellis S, Lin EJ, Tartar D. Immunology of Wound Healing. Curr Dermatol Rep [Internet]. 2018;7(4):350–358. Available from: https://doi.org/10.1007/s13671-018-0234-9
Barreto RSS, Albuquerque-Júnior RLC, Pereira-Filho RN, Quintans JSS, et al. Evaluation of wound healing activity of atranorin, a lichen secondary metabolite, on rodents. Rev Bras Farmacogn [Internet]. 2013;23(2):310–319. Available from: http://dx.doi.org/10.1590/S0102-695X2013005000010
Theoret C. Physiology of Wound Healing. In: Theoret C, Schumacher J (eds.). Equine Wound Management [Internet]. Third ed. Ames, Iowa: John Wiley & Sons, Inc; 2016. 1–13p. Available from: https://doi.org/10.1002/9781118999219.ch1
Pastar I, Stojadinovic O, Yin NC, Ramirez H, et al. Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care [Internet]. 2014;3(7):445–64. Available from: https://doi.org/10.1089/wound.2013.0473
Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci [Internet]. 2016;73(20):3861–85. Available from: https://doi.org/10.1007/s00018-016-2268-0
Gonzalez ACDO, Andrade ZDA, Costa TF, Medrado ARAP. Wound healing - A literature review. An Bras Dermatol [Internet]. 2016;91(5):614–620. Available from: https://doi.org/10.1590/abd1806-4841.20164741
Minossi JG, Oliveira LA, Caramori CA, Hasimoto CN, et al. Alloxan diabetes alters the tensile strength, morphological and morphometric parameters of abdominal wall healing in rats. Acta Cir Bras [Internet]. 2014;29(2):118–124. Available from: https://doi.org/10.1590/S0102-86502014000200008
Olczyk P, Mencner Ł, Komosinska-Vassev K. The Role of the Extracellular Matrix Components in Cutaneous Wound Healing. BioMed Res Int [Internet]. 2014:747584. Available from: https://doi.org/10.1155/2014/747584
Xue M, Jackson CJ. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv Wound Care [Internet]. 2015;4(3):119–136. Available from: https://doi.org/10.1089/wound.2013.0485
Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, et al. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci [Internet]. 2020;15(6):661-684. Available from: https://doi.org/10.1016/j.ajps.2019.11.008
Ehterami A, Salehi M, Farzamfar S, Vaez A, et al. In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. Int J Biol Macromol [Internet]. 2018;117(1):601-609. Available from: https://doi.org/10.1016/j.ijbiomac.2018.05.184
Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater [Internet]. 2020;5(1):20–43. Available from: http://dx.doi.org/10.1038/s41578-019-0148-6
Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater [Internet]. 2016;1(12):16071. Available from: http://dx.doi.org/10.1038/natrevmats.2016.71
Chai Q, Jiao Y, Yu X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels [Internet]. 2017;3(1):6. Available from: https://doi.org/10.3390/gels3010006
Azuma K, Izumi R, Osaki T, Ifuku S, et al. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials. J Funct Biomater [Internet]. 2015;6(1):104–142. Available from: http://dx.doi.org/10.3390/jfb6010104
Dai T, Tanaka M, Huang Y-Y, Hamblin MR. Chitosan preparations for wound-healing effects. Expert Rev Anti Infect Ther [Internet]. 2011;9(7):857-879. Available from: http://dx.doi.org/10.1586/eri.11.59
El-Kased RF, Amer RI, Attia D, Elmazar MM. Honey-based hydrogel: In vitro and comparative In vivo evaluation for burn wound healing. Sci Rep [Internet]. 2017;7(1):9692. Available from: http://dx.doi.org/10.1038/s41598-017-08771-8
Matica MA, Aachmann FL, Tøndervik A, Sletta H, et al. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int J Mol Sci [Internet]. 2019;20(23):5889. Available from: https://doi.org/10.3390/ijms20235889
Sivamani RK, Ma BR, Wehrli LN, Maverakis E. Phytochemicals and Naturally Derived Substances for Wound Healing. Adv Wound Care [Internet]. 2012;1(5):213–217. Available from: https://doi.org/10.1089/wound.2011.0330
Burusapat C, Supawan M, Pruksapong C, Pitiseree A, et al. Topical Aloe Vera Gel for Accelerated Wound Healing of Split-Thickness Skin Graft Donor Sites: A Double-Blind, Randomized, Controlled Trial and Systematic Review. Plast Reconstr Surg [Internet]. 2018;142(1):217–226. Available from: https://doi.org/10.1097/PRS.0000000000004515
Hashemi SA, Madani SA, Abediankenari S. The Review on Properties of Aloe Vera in Healing of Cutaneous Wounds. Biomed Res Int [Internet]. 2015;2015:714216. Available from: https://doi.org/10.1155/2015/714216
Darzi S, Paul K, Leitan S, Werkmeister JA, et al. Immunobiology and Application of Aloe vera-Based Scaffolds in Tissue Engineering. Int J Mol Sci [Internet]. 2021;22(4):1708. Available from: https://doi.org/10.3390/ijms22041708
Givol O, Kornhaber R, Visentin D, Cleary M, et al. A systematic review of Calendula officinalis extract for wound healing. Wound Repair Regen [Internet]. 2019;27(5):548–561. Available from: https://doi.org/10.1111/wrr.12737
Dinda M, Mazumdar S, Das S, Ganguly D, et al. The Water Fraction of Calendula officinalis Hydroethanol Extract Stimulates In Vitro and In Vivo Proliferation of Dermal Fibroblasts in Wound Healing. Phyther Res [Internet]. 2016;30(10):1696-1707. Available from: https://doi.org/10.1002/ptr.5678
Buzzi M, de Freitas F, de Barros Winter M. Therapeutic effectiveness of a Calendula officinalis extract in venous leg ulcer healing. J Wound Care [Internet]. 2016;25(12):732–739. Available from: https://doi.org/10.12968/jowc.2016.25.12.732
Chithra P, Sajithlal GB, Chandrakasan G. Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. J Ethnopharmacol [Internet]. 1998;59(3):179–186. Available from: https://doi.org/10.1016/S0378-8741(97)00112-8
Kosir MA, Quinn CCV, Wang W, Tromp G. Matrix Glycosaminoglycans in the Growth Phase of Fibroblasts: More of the Story in Wound Healing. J Surg Res [Internet]. 2000;92(1):45–52. Available from: https://doi.org/10.1006/jsre.2000.5840
Smith QT. Collagen Metabolism in Wound Healing. In: Day SB (eds). Trauma [Internet]. Boston: Springer; 1975. 31–45p. Available from: https://doi.org/10.1007/978-1-4684-2145-3_3
Bainbridge P. Wound healing and the role of fibroblasts. J Wound Care [Internet]. 2013;22(8):407–412. Available from: https://doi.org/10.12968/jowc.2013.22.8.407
Chhabra P, Mehra L, Mittal G, Kumar A. A Comparative Study on the Efficacy of Chitosan Gel Formulation and Conventional Silver Sulfadiazine Treatment in Healing Burn Wound Injury at Molecular Level. Asian J Pharm [Internet]. 2017;11(3):489–496. Available from: https://dx.doi.org/10.22377/ajp.v11i03.1449
Takzare N, Hosseini MJ, Hasanzadeh G, Mortazavi H, et al. Influence of Aloe Vera Gel on Dermal Wound Healing Process in Rat. Toxicol Mech Methods [Internet]. 2009;19(1):73–77. Available from: https://doi.org/10.1080/15376510802442444
Cheng KY, Lin ZH, Cheng YP, Chiu HY, et al. Wound Healing in Streptozotocin-Induced Diabetic Rats Using Atmospheric-Pressure Argon Plasma Jet. Sci Rep [Internet]. 2018;8(1):12214. Available from: https://doi.org/10.1038/s41598-018-30597-1
Bravo-Sánchez E, Peña-Montes D, Sánchez-Duarte S, Saavedra-Molina A, et al. Effects of Apocynin on Heart Muscle Oxidative Stress of Rats with Experimental Diabetes: Implications for Mitochondria. Antioxidants [Internet]. 2021;10(3):335. Available from: https://doi.org/10.3390/antiox10030335
Sánchez-Duarte S, Márquez-Gamiño S, Montoya-Pérez R, Villicaña-Gómez EA, et al. Nicorandil decreases oxidative stress in slow- and fast-twitch muscle fibers of diabetic rats by improving the glutathione system functioning. J Diabetes Investig [Internet]. 2021;12(7):1152–1161. Available from: https://doi.org/10.1111/jdi.13513
Oryan A, Mohammadalipour A, Moshiri A, Tabandeh MR. Topical Application of Aloe vera Accelerated Wound Healing, Modeling, and Remodeling. Ann Plast Surg [Internet]. 2016;77(1):37–46. Available from: https://doi.org/10.1097/SAP.0000000000000239
Ignat’eva NY, Danilov NA, Averkiev SV, Obrezkova MV, et al. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. J Anal Chem [Internet]. 2007;62(1):51–7. Available from: https://doi.org/10.1134/S106193480701011X
Van Lenten, L. Automated Analysis of Amino Sugars using the Elson-Morgan Reaction [Internet]. [Dissertation]. [Connecticut]: Yale School of Medicine, 1966. 107p. Available from: https://elischolar.library.yale.edu/ymtdl/6/
Cheng PT. An Improved Method for the Determination of Hydroxyproline in Rat Skin. J Invest Dermatol [Internet]. 1969;53(2):112–115. Available from: http://dx.doi.org/10.1038/jid.1969.116
Reissig JL, Storminger JL, Leloir LF. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem [Internet]. 1955;217(2):959–966. Available from: https://doi.org/10.1016/S0021-9258(18)65959-9
Movaffagh J, Bazzaz BSF, Yazdi AT, Sajadi-Tabassi A, et al. Wound Healing and Antimicrobial Effects of Chitosan-hydrogel/Honey Compounds in a Rat Full-thickness Wound Model. Wounds [Internet]. 2019;31(9):228-235. Available from: https://pubmed.ncbi.nlm.nih.gov/31298661/
Duran V, Matic M, Javanovć M, Mimica N, et al. Results of the clinical examination of an ointment with marigold (Calendula Officinalis) extract in the treatment of venous leg ulcers. Int J Tissue React [Internet]. 2005;27(3):101–106. Available from: https://europepmc.org/article/MED/16372475
Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol [Internet]. 2007;25(1):9–18. Available from: https://doi.org/10.1016/j.clindermatol.2006.09.007
Elegbede RD, Ilomuanya MO, Sowemimo AA, Nneji A, et al. Effect of fermented and green Aspalathus linearis extract loaded hydrogel on surgical wound healing in Sprague Dawley rats. Wound Med [Internet]. 2020;29:100186. Available from: https://doi.org/10.1016/j.wndm.2020.100186
Ghatak S, Maytin EV, MacK JA, Hascall VC, et al. Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis. Int J Cell Biol [Internet]. 2015;2015:834893. Available from: https://doi.org/10.1155/2015/834893
Abatangelo G, Brun P, Cortivo R. Collagen Metabolism and Wound Contraction. In: Altmeyer P, Hoffman K, el Gammal S, Hutchinson J (eds). Wound Healing and Skin Physiology [Internet]. Berlin: Springer; 1995. 71–88p. Available from: https://doi.org/10.1007/978-3-642-77882-7_7
Monaco JAL, Lawrence WT. Acute wound healing: An overview. Clin Plast Surg [Internet]. 2003;30(1):1–12. Available from: https://doi.org/10.1016/S0094-1298(02)00070-6
Nunes PS, Albuquerque-Júnior RLC, Cavalcante DRR, Dantas MDM, et al. Collagen-Based Films Containing Liposome-Loaded Usnic Acid as Dressing for Dermal Burn Healing. Biomed Res Int [Internet]. 2011;2011:761593. Available from: https://doi.org/10.1155/2011/761593
Quave CL. Wound Healing with Botanicals: a Review and Future Perspectives. Curr Dermatol Rep [Internet]. 2018;7(4):287–295. Available from: https://doi.org/10.1007/s13671-018-0247-4
Muley BP, Khadabadi SS, Banarase NB. Phytochemical Constituents and Pharmacological Activities of Calendula officinalis Linn (Asteraceae): A Review. Trop J Pharm Res [Internet]. 2009;8(5):455–465. Available from: https://doi.org/10.4314/tjpr.v8i5.48090
Fonseca YM, Catini CD, Vicentini FTMC, Nomizo A, et al. Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: Evaluation of reduced glutathione levels and matrix metalloproteinase secretion. J Ethnopharmacol [Internet]. 2010;127(3):596–601. Available from: https://doi.org/10.1016/j.jep.2009.12.019
Majumder R, Das CK, Mandal M. Lead bioactive compounds of Aloe vera as potential anticancer agent. Pharmacol Res [Internet]. 2019;148:104416. Available from: https://doi.org/10.1016/j.phrs.2019.104416
Radha MH, Laxmipriya NP. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. J Tradit Complement Med [Internet]. 2015;5(1):21–26. Available from: https://doi.org/10.1016/j.jtcme.2014.10.006
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista mexicana de ingeniería biomédica.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Una vez que el artículo es aceptado para su publicación en la RMIB, se les solicitará al autor principal o de correspondencia que revisen y firman las cartas de cesión de derechos correspondientes para llevar a cabo la autorización para la publicación del artículo. En dicho documento se autoriza a la RMIB a publicar, en cualquier medio sin limitaciones y sin ningún costo. Los autores pueden reutilizar partes del artículo en otros documentos y reproducir parte o la totalidad para su uso personal siempre que se haga referencia bibliográfica al RMIB. No obstante, todo tipo de publicación fuera de las publicaciones académicas del autor correspondiente o para otro tipo de trabajos derivados y publicados necesitaran de un permiso escrito de la RMIB.