Estudiando el Efecto de la Temperatura en la Resistencia Tensil de un Catéter Intravascular Usando un Modelo de Degradación

Autores/as

DOI:

https://doi.org/10.17488/RMIB.43.2.2

Palabras clave:

Envejecimiento acelerado, Degradación, Tiempo de primer paso, Catéter intravascular, Proceso Wiener

Resumen

El proceso de envejecimiento acelerado es incorporado en el diseño y desarrollo de catéteres intravasculares para evaluar su confiabilidad y asegurar que el dispositivo medico es seguro y efectivo para su uso durante su vida de estante. Este proceso está basado en un enfoque que asume que la tasa de envejecimiento se incrementa por un factor de , en donde  es el incremento de temperatura. Sin embargo, con los datos de vida obtenidos de este método empírico resulta complicado realizar inferencias sobre la confiabilidad del dispositivo. Este articulo presenta una prueba de degradación acelerada destructiva que considera un estrés termal para obtener datos de degradación que se relaciona directamente la confiabilidad con la resistencia tensil de la punta de un catéter intravascular y que es considerada como una característica critica para la seguridad de los pacientes. El modelo de degradación esta dado por un proceso estocástico Wiener, con el parámetro de deriva representado la relación de Arrhenius. Los parámetros del proceso Wiener y la relación de Arrhenius son estimados mediante máxima verosimilitud; estos parámetros son usados para estimar la distribución de primer paso, la cual se caracteriza cuando la resistencia de un catéter alcanza el nivel crítico de resistencia en cada nivel de estrés. Considerando esto, se lleva a cabo y se presenta una evaluación de confiabilidad completa del producto.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Kimberly Esqueda Hernández, Universidad Autónoma de Ciudad Juárez, México

Departamento de Ingeniería Industrial y Manufactura

Luis Alberto Rodríguez-Picón, Universidad Autónoma de Ciudad Juárez, México

Departamento de Ingeniería Industrial y Manufactura

Luis Carlos Méndez-González, Universidad Autónoma de Ciudad Juárez, México

Departamento de Ingeniería Industrial y Manufactura

Roberto Romero-López, Universidad Autonoma de Ciudad Juarez, México

Departamento de Ingeniería Industrial y Manufactura

Citas

Hukins DWL, Mahomed A, Kukureka SN. Accelerated aging for testing polymeric biomaterials and medical devices. Med Eng Phys [Internet]. 2008;30(10):1270–1274. Available from: https://doi.org/10.1016/j.medengphy.2008.06.001

Lambert BJ, Tang F-W. Rationale for practical medical device accelerated aging programs in AAMI TIR 17. Radiat Phys Chem [Internet]. 2000;57(3-6):349–353. Available from: https://doi.org/10.1016/S0969-806X(99)00403-X

Clark, GS. Shelf Life of Medical Devices [Internet]. Division of Small Manufacturers Assistance, Office of Training and Assistance, Center for Devices and Radiological Health, Food and Drug Administration; 1991. 31p. Available from: https://www.fda.gov/media/72487/download

Hemmerich KJ. General aging theory and simplified protocol for accelerated aging of medical devices. Met Plast Biomater. 1998;5:16-23.

ASTM International. ASTM F1980-07(2011) Standard Guide for Accelerated Aging of Sterile Barrier Systems for Medical Devices. ASTM International [Internet]; 2016. Available from: https://doi.org/10.1520/F1980-07R11

Sawant M, Christou A. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications. Solid State Electron [Internet]. 2012;78:39–45. Available from: https://doi.org/10.1016/j.sse.2012.05.042

Pan D, Lu S, Liu Y, Yang W, et al. Degradation Data Analysis Using a Wiener Degradation Model with Three-Source Uncertainties. IEEE Access [Internet]. 2019;7:37896–37907. Available from: https://doi.org/10.1109/ACCESS.2019.2906325

Yang G. Lyfe Cycle Reliability Engineering [Internet]. Hoboken: John Wiley & Sons, Inc; 2007. 517p. Available from: http://dx.doi.org/10.1002/9780470117880

Lim H, Yum B-J. Optimal design of accelerated degradation tests based on Wiener process models. J Appl Stat [Internet]. 2011;38(2):309–325. Available from: https://doi.org/10.1080/02664760903406488

Rodríguez-Picón LA, Peréz-Domínguez L, Mejia J, Pérez-Olguín IJ, et al. A Deconvolution Approach for Degradation Modeling with Measurement Error. IEEE Access [Internet]. 2019;7:143899–143911. Available from: http://dx.doi.org/10.1109/access.2019.2945566

Rodríguez-Picón LA, Rodríguez-Picón AP, Alvarado-Iniesta A. Degradation modeling of 2 fatigue-crack growth characteristics based on inverse Gaussian processes: A case study. Appl Stoch Model Bus Ind [Internet]. 2019;35(3):504–521. Available from: http://dx.doi.org/10.1002/asmb.2329

Rodríguez-Picón LA, Flores-Ochoa VH, Méndez-González LC, Rodríguez-Medina MA. Bivariate degradation modelling with marginal heterogeneous stochastic processes. J Stat Comput Simul [Internet]. 2017;87(11):2207–2226. Available from: http://dx.doi.org/10.1080/00949655.2017.1324858

Li T, Pei H, Pang Z, Si X, et al. A Sequential Bayesian Updated Wiener Process Model for Remaining Useful Life Prediction. IEEE Access [Internet]. 2020;8:5471–5480. Available from: http://dx.doi.org/10.1109/ACCESS.2019.2962502

Lyu Y, Zhang Y, Chen K, Chen C, et al. Optimal Multi-Objective Burn-In Policy Based on Time-Transformed Wiener Degradation Process. IEEE Access [Internet]. 2019;7:73529–73539. Available from: http://dx.doi.org/10.1109/ACCESS.2019.2918510

Escobar LA, Meeker WQ, Kugler DL, Kramer LL. Accelerated Destructive Degradation Tests: Data, Models, and Analysis. Series on Quality, Reliability and Engineering Statistics [Internet]. In: Lindvist BH, Doksum KA (eds). Mathematical and Statistical Methods in Reliability. River Edge: World Scientific Publishing Company; 2003. 319–337p. Available from: http://dx.doi.org/10.1142/9789812795250_0021

Tsai C-C, Tseng S-T, Balakrishnan N, Lin C-T. Optimal Design for Accelerated Destructive Degradation Tests. Qual Technol Quant Manag [Internet]. 2013;10(3):263–276. Available from: http://dx.doi.org/10.1080/16843703.2013.11673413

Shi Y, Meeker WQ. Bayesian Methods for Accelerated Destructive Degradation Test Planning. IEEE Trans Reliab [Internet]. 2012;61(1):245–253. Available from: http://dx.doi.org/10.1109/TR.2011.2170115

Shi Y, Escobar LA, Meeker WQ. Accelerated Destructive Degradation Test Planning. Technometrics [Internet]. 2009;51(1):1–13. Available from: http://dx.doi.org/10.1198/TECH.2009.0001

Food and Drug Administration. CFR - Code of Federal Regulations Title 21. Food and Drug Administration [Internet]. 2019. Available from: https://www.fda.gov/medical-devices/medical-device-databases/code-federal-regulations-title-21-food-and-drugs

Food and Drug Administration. Guidance on Premarket Notification [510(k)] Submission for Short-Term and Long-Term Intravascular Catheters. Food and Drug Administration [Internet]. 1995. Available from: https://www.fda.gov/media/72722/download

Food and Drug Administration. Coronary and Peripheral Arterial Diagnostic Catheters - Guidance for Industry and FDA Staff. Food and Drug Administration [Internet]. 2003. Available from: https://www.fda.gov/media/71373/download

Food and Drug Administration. Peripheral Percutaneous Transluminal Angioplasty (PTA) and Specialty Catheters - Premarket Notification (510(k)) Submissions. Food and Drug Administration [Internet]. 2020. Available from: https://www.fda.gov/media/134016/download

Food and Drug Administration. MDR - Medical Device Recalls. Food and Drug Administration [Internet]. 2020. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm

Food and Drug Administration. MAUDE - Manufacturer and User Facility Device Experience. Food and Drug Administration [Internet]. 2020. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/search.CFM

Lanzer P. Mastering Endovascular Techniques: A Guide to Excellence. Baltimore: Lippincott Williams & Wilkins; 2006. 480p.

International Organization Standardisation (ISO). ISO 10555-1: Intravascular catheters — Sterile and single-use catheters — Part 1: General requirements. Geneva, Switzerland: International Organization for Standardisation. 2013. 24p.

Kahle W, Mercier S, Paroissin C. Degradation Processes in Reliability [Internet]. New Jersey: John Wiley & Sons; 2016. 211p. Available from: http://dx.doi.org/10.1002/9781119307488

GNU. The R Project for Statistical Computing R [Internet]. 2016. Available from: https://www.R-project.org/

Publicado

2022-06-15

Cómo citar

Esqueda Hernández, K., Rodríguez-Picón, L. A., Méndez-González, L. C., & Romero-López, R. . (2022). Estudiando el Efecto de la Temperatura en la Resistencia Tensil de un Catéter Intravascular Usando un Modelo de Degradación. Revista Mexicana De Ingenieria Biomedica, 43(2), 24–38. https://doi.org/10.17488/RMIB.43.2.2

Número

Sección

Artículos de Investigación

Citas Dimensions