Segmentación de Lesiones en la Retina Usando Transferencia de Conocimiento con CNN Encoder-Decoder
DOI:
https://doi.org/10.17488/RMIB.43.2.4Palabras clave:
Transferencia de conocimientos, Codificador-decodificador, Imágenes de retina, Segmentación de lesiones, Aprendizaje profundoResumen
Las técnicas de Deep Learning (DL) han demostrado un buen desempeño en la detección de anomalías en imágenes de retina, pero la mayoría de los modelos son entrenados en diferentes bases de datos para resolver una tarea en específico. Como consecuencia, actualmente no se cuenta con modelos que se puedan usar para la detección/segmentación de varias lesiones o anomalías con un solo modelo. En este artículo, se utiliza Transfer Learning (TL) con la cual se aprovecha el conocimiento adquirido para determinar si una imagen de retina tiene o no una lesión. Con este conocimiento se segmenta la imagen utilizando una red neuronal convolucional (CNN), donde los encoders o extractores de características son modelos clásicos como VGG-16 y ResNet50 o variantes con módulos de atención. Se demuestra así, que es posible utilizar una metodología general con bases de datos de retina para la detección/segmentación de lesiones en la retina alcanzando resultados como los que se muestran en el estado del arte. Este modelo puede ser entrenado con bases de datos más reales que contengan una gama de enfermedades para detectar/segmentar sin sacrificar rendimiento. TL puede ayudar a conseguir una convergencia rápida del modelo si la base de datos principal (Clasificación) se parece a la base de datos de las tareas secundarias (Segmentación), si esto no se cumple los parámetros básicamente comienzan a ajustarse desde cero.
Descargas
Citas
Trucco E, MacGillivray T, Xu Y (eds). Computational Retinal Image Analysis [Internet]. Cambridge, United States: Elsevier; 2019. 481p. Available from: https://doi.org/10.1016/B978-0-08-102816-2.09994-9
Prado-Serrano A, Guido-Jiménez MA, Camas-Benítez JT. Prevalencia de retinopatía diabética en población mexicana. Rev Mex Oftalmol [Internet]. 2009; 83(5):261–266. Available: https://www.medigraphic.com/pdfs/revmexoft/rmo-2009/rmo095c.pdf
Ricci E, Perfetti R. Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification. IEEE Trans Med Imaging [Internet]. 2007;26(10):1357-1365. Available from: https://doi.org/10.1109/TMI.2007.898551
Sarhan MH, Nasseri MA, Zapp D, Maier M, et al. Machine Learning Techniques for Ophthalmic Data Processing: A Review. IEEE J Biomed Health Inform [Internet]. 2020;24(12):3338–3350. Available from: http://dx.doi.org/10.1109/JBHI.2020.3012134
Ammu R, Sinha N. Small Segment Emphasized Performance Evaluation Metric for Medical Images. 2020 International Conference on Signal Processing and Communications (SPCOM) [Internet]. Bangalore : IEEE;2020; 1–5. Available from: http://dx.doi.org/10.1109/SPCOM50965.2020.9179617
Quellec G, Charrière K, Boudi Y, Cochener B, et al. Deep image mining for diabetic retinopathy screening. Med Image Anal [Internet]. 2017;39:178–193. Available from: https://doi.org/10.1016/j.media.2017.04.012
Zhang X, Thibault G, Decencière E, Marcotegui B, et al. Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med Image Anal [Internet]. 2014;18(7):1026–1043. Available from: https://doi.org/10.1016/j.media.2014.05.004
Feng Z, Yang J, Yao L, Qiao Y, et al. Deep Retinal Image Segmentation: A FCN-Based Architecture with Short and Long Skip Connections for Retinal Image Segmentation. In: Liu D, Xie S, Li Y, Zhao D, et al. (eds). Neural Information Processing ICONIP 2017. Lecture Notes in Computer Science, vol. 10637 [Internet]. Cham: Springer; 2017; 713-722. Available from: https://doi.org/10.1007/978-3-319-70093-9_76
Ye JC, Sung WK. Understanding Geometry of Encoder-Decoder CNNs. 36th International Conference on Machine Learning, ICML 2019 [Internet]. Long Beach: Proceedings of Machine Learning Research; 2019;97:12245–12254. Available from: https://proceedings.mlr.press/v97/ye19a.html
Tan C, Sun F, Kong T, Zhang W, et al. A Survey on Deep Transfer Learning. In: Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I (eds). Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science [Internet]. Cham: Springer; 2018. 11041: 270–279. Available from: http://dx.doi.org/10.1007/978-3-030-01424-7_27
Tang S, Qi Z, Granley J, Beyeler M. U-Net with Hierarchical Bottleneck Attention for Landmark Detection in Fundus Images of the Degenerated Retina. In: Fu H, Garvin MK, MacGillivray T, Xu Y, et al (eds). Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science [Internet]. Cham: Springer; 2021. 12970:62–71. Available from: https://doi.org/10.1007/978-3-030-87000-3_7
Welikala RA, Foster PJ, Whincup PH, Rudnicka AR, et al. Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort. Comput Biol Med [Internet]. 2017;90:23–32. Available from: https://doi.org/10.1016/j.compbiomed.2017.09.005
Fraz MM, Rudnicka AR, Owen CG, Barman SA. Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification. Int J Comput Assist Radiol Surg [Internet]. 2014;9:795–811. Available from: https://doi.org/10.1007/s11548-013-0965-9
Adel A, Soliman MM, Khalifa NEM, Mostafa K. Automatic Classification of Retinal Eye Diseases from Optical Coherence Tomography using Transfer Learning. 2020 16th International Computer Engineering Conference (ICENCO) [Internet]. Cairo: IEEE; 2020: 37–42. Available from: https://doi.org/10.1109/ICENCO49778.2020.9357324
Xiao Z, Adel M, Bourennane S. Bayesian Method with Spatial Constraint for Retinal Vessel Segmentation. Comput Math Methods Med [Internet]. 2013:401413. Available from: https://doi.org/10.1155/2013/401413
Lam C, Yu C, Huang L, Rubin D. Retinal Lesion Detection with Deep Learning Using Image Patches. Invest Ophthalmol Vis Sci [Internet]. 2018;59(1):590–596. Available from: https://doi.org/10.1167/iovs.17-22721
Li Q, Feng B, Xie L, Liang P, et al. A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images. IEEE Trans Med Imaging [Internet]. 2016;35(1):109–118. Available from: https://doi.org/10.1109/TMI.2015.2457891
Long S, Chen J, Hu A, Liu H, et al. Microaneurysms detection in color fundus images using machine learning based on directional local contrast. Biomed Eng Online [Internet]. 2020;19(1):21. Available from: https://doi.org/10.1186/s12938-020-00766-3
Aziz T, Ilesanmi AE, Charoenlarpnopparut C. Efficient and Accurate Hemorrhages Detection in Retinal Fundus Images Using Smart Window Features. Appl Sci [Internet]. 2021;11(14):6391. Available from: https://doi.org/10.3390/app11146391
Liu Q, Liu H, Zhao Y, Liang Y. Dual-Branch Network with Dual-Sampling Modulated Dice Loss for Hard Exudate Segmentation in Colour Fundus Images. IEEE J Biomed Health Inform [Internet]. 2022;26(3):1091-1102. Available from: https://doi.org/10.1109/jbhi.2021.3108169
Zong Y, Chen J, Yang L, Tao S, et al. U-net Based Method for Automatic Hard Exudates Segmentation in Fundus Images Using Inception Module and Residual Connection. IEEE Access [Internet]. 2020;8:167225–35. Available from: http://dx.doi.org/10.1109/ACCESS.2020.3023273
Tan JH, Fujita H, Sivaprasad S, Bhandary SV, et al. Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf Sci [Internet]. 2017;420:66–76. Available from: https://doi.org/10.1016/j.ins.2017.08.050
Kou C, Li W, Yu Z, Yuan L. An Enhanced Residual U-Net for Microaneurysms and Exudates Segmentation in Fundus Images. IEEE Access [Internet]. 2020;8:185514–185525. Available from: http://dx.doi.org/10.1109/ACCESS.2020.3029117
Gondal WM, Köhler JM, Grzeszick R, Fink GA, et al. Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. 2017 IEEE International Conference on Image Processing (ICIP) [Internet]. Beijing: IEEE; 2017; 2069-2073. Available from: https://doi.org/10.1109/ICIP.2017.8296646
Joshi GD, Sivaswamy J, Krishnadas SR. Optic Disk and Cup Segmentation From Monocular Color Retinal Images for Glaucoma Assessment. IEEE Trans Med Imaging [Internet]. 2011;30(6):1192–1205. Available from: https://doi.org/10.1109/TMI.2011.2106509
Harangi B, Antal B, Hajdu A. Automatic exudate detection with improved naïve-Bayes classifier. 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS) [Internet]. Rome: IEEE; 2012; 1-4. Available from: https://doi.org/10.1109/CBMS.2012.6266341
Cheung CY, Xu D, Cheng CY, Sabanayagam C, et al. A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel caliber. Nat Biomed Eng [Internet]. 2021;5(6):498–508. Available from: https://doi.org/10.1038/s41551-020-00626-4
Dai L, Wu L, Li H, Cai C, et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat Commun [Internet]. 2021;12(1):3242. Available from: https://doi.org/10.1038/s41467-021-23458-5
Kou C, Li W, Liang W, Yu Z, et al. Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network. J Med Imaging [Internet]. 2019;6(2):025008. Available from: https://dx.doi.org/10.1117%2F1.JMI.6.2.025008
Xu X, Tan T, Xu F. An Improved U-Net Architecture for Simultaneous Arteriole and Venule Segmentation in Fundus Image. In: Nixon M, Mahmoodi S, Zwiggelaar R (eds). Medical Image Understanding and Analysis. MIUA 2018. Communications in Computer and Information Science [Internet]. Cham: Springer; 2018; 333–340. Available from: https://doi.org/10.1007/978-3-319-95921-4_31
Yadav G, Maheshwari S, Agarwal A. Contrast limited adaptive histogram equalization based enhancement for real time video system. 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) [Internet]. Delhi: IEEE; 2014; 2392-2397. Available from: https://doi.org/10.1109/ICACCI.2014.6968381
Decencière E, Zhang X, Cazuguel G, Lay B, et al. Feedback on a publicly distributed image database: The Messidor database. Image Anal Stereol [Internet]. 2014;33(3):231. Available from: https://doi.org/10.5566/ias.1155
Kaggle. Diabetic Retinopathy Detection. [Internet] Kaggle. 2015. Available from: https://www.kaggle.com/c/diabetic-retinopathy-detection
Porwal P, Pachade S, Kamble R, Kokare M, et al. Indian Diabetic Retinopathy Image Dataset (IDRiD) [Internet]. IEEE Dataport; 2018. Available from: https://dx.doi.org/10.21227/H25W98
Decencière E, Cazuguel G, Zhang X, Thibault G, et al. TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM [Internet]. 2013;34(2):196–203. Available from: https://doi.org/10.1016/j.irbm.2013.01.010
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Bengio Y, LeCun Y (eds). 3rd International Conference on Learning Representations, ICLR 2015 [Internet]. San Diego: arXiv;2015; 1–14. Available from: https://doi.org/10.48550/arXiv.1409.1556
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]. Las Vegas: IEEE; 2016; 770-778. Available from: https://doi.org/10.1109/CVPR.2016.90
Woo S, Park J, Lee JY, Kweon IS. CBAM: Convolutional Block Attention Module. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds). Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science [Internet]. Cham: Springer; 2018; 3–19. Available from: https://doi.org/10.1007/978-3-030-01234-2_1
Cortes C, Research G, Mohri M, Rostamizadeh A. L2 Regularization for Learning Kernels. 25th Conference on Uncertainty in Artificial Intelligence (UAI 2009) [Internet]. Montreal: Association for Uncertainty in Artificial Intelligence (AUAI); 2009; 109-116. Available from: https://dl.acm.org/doi/pdf/10.5555/1795114.1795128
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37 (ICML'15) [Internet]. Lille: JMLR; 2015; 448-456. Available from: http://proceedings.mlr.press/v37/ioffe15.pdf
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J Mach Learn Res [Internet]. 2014; 15(56):1929–1958. Available from: http://jmlr.org/papers/v15/srivastava14a.html
Wisaeng K, Sa-Ngiamvibool W. Exudates Detection Using Morphology Mean Shift Algorithm in Retinal Images. IEEE Access [Internet]. 2019;7:11946–11958. Available from: http://dx.doi.org/10.1109/ACCESS.2018.2890426
van Grinsven MJJP, van Ginneken B, Hoyng CB, Theelen T, et al. Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images. IEEE Trans Med Imaging [Internet]. 2016;35(5):1273–1284Available from: https://doi.org/10.1109/TMI.2016.2526689
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista mexicana de ingeniería biomédica.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Una vez que el artículo es aceptado para su publicación en la RMIB, se les solicitará al autor principal o de correspondencia que revisen y firman las cartas de cesión de derechos correspondientes para llevar a cabo la autorización para la publicación del artículo. En dicho documento se autoriza a la RMIB a publicar, en cualquier medio sin limitaciones y sin ningún costo. Los autores pueden reutilizar partes del artículo en otros documentos y reproducir parte o la totalidad para su uso personal siempre que se haga referencia bibliográfica al RMIB. No obstante, todo tipo de publicación fuera de las publicaciones académicas del autor correspondiente o para otro tipo de trabajos derivados y publicados necesitaran de un permiso escrito de la RMIB.