Segmentación de imágenes de OCT y OCT-A por medio de Redes Neuronales Convolucionales

Autores/as

  • Fernanda Cisneros-Guzmán Universidad Autónoma de Querétaro, México
  • Manuel Toledano-Ayala Universidad Autónoma de Querétaro, México
  • Saúl Tovar-Arriaga Universidad Autónoma de Querétaro, México
  • Edgar A. Rivas-Araiza Universidad Autótoma de Querétaro, México

DOI:

https://doi.org/10.17488/RMIB.43.3.2

Palabras clave:

Segmentación OCT-A, ResU-Net, segmentación FCN, Red neuronal convolucional

Resumen

La segmentación juega un papel vital en las imágenes de angiografía por tomografía de coherencia óptica (OCT-A), ya que la separación y distinción de las diferentes partes que forman la mácula simplifican la detección posterior de patrones/enfermedades observables en la retina. En este trabajo, llevamos a cabo una segmentación de imágenes multiclase donde se destacan las mejores características en los plexos apropiados al comparar diferentes arquitecturas de redes neuronales, incluidas U-Net, ResU-Net y FCN. Nos centramos en dos zonas críticas: la segmentación de la vasculatura retiniana (RV) y la zona avascular foveal (FAZ). La precisión para RV y FAZ en 316 imágenes OCT-A de la base de datos OCT-A 500 se obtuvo en 93.21 % y 92.59 %. Cuando se segmentó la FAZ en una clasificación binaria, con un 99.83% de precisión.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Wons J, Pfau M, Wirth MA, Freiberg FJ, et al. Optical coherence tomography angiography of the foveal avascular zone in retinal vein occlusion. Ophthalmologica [Internet]. 2016; 235:195-202. Available from: https://doi.org/10.1159/000445482

Guo M, Zhao M, Cheong AMY, Dai H, et al. Automatic quantification of superficial foveal avascular zone in optical coherence tomography angiography implemented with deep learning. Vis Comput Ind Biomed Art [Internet]. 2019;2:21. Available from: https://doi.org/10.1186/s42492-019-0031-8

Leopold HA, Orchard J, Zelek JS, Lakshminarayanan V. PixelBNN: Augmenting the Pixelcnn with Batch Normalization and the Presentation of a Fast Architecture for Retinal Vessel Segmentation. J Imaging [Internet]. 2019;5(2):26. Available from: https://doi.org/10.3390/jimaging5020026

Zhang Y, Chung ACS. Deep Supervision with Additional Labels for Retinal Vessel Segmentation Task. In: Frangi A, Schnabel J, Davatzikos C, Alberola-López C, et al. (eds). Medical Image Computing and Computer Assisted Intervention- MICCAI 2018 [Internet]. Granada, Spain: Springer; 2018:83-91. Available from: https://doi.org/10.1007/978-3-030-00934-2_10

Xiao X, Lian S, Luo Z, Li S. Weighted Res-UNet for High-Quality Retina Vessel Segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME) [Internet]. Hangzhou, China: IEEE; 2018: 327-331. Available from: https://doi.org/10.1109/ITME.2018.00080

Son J, Park SJ, Jung KH. Towards Accurate Segmentation of Retinal Vessels and the Optic Disc in Fundoscopic Images with Generative Adversarial Networks. J Digit Imaging [Internet]. 2019;32(3):499–512. Available from: https://doi.org/10.1007/s10278-018-0126-3

Jayabalan GS, Bille JF. The Development of Adaptive Optics and Its Application in Ophthalmology. In: Bille J. (eds). High Resolution Imaging in Microscopy and Ophthalmology [Internet]. Cham, Switzerland: Springer; 2019: 339–358p.

Taher F, Kandil H, Mahmoud H, Mahmoud A, et al. A Comprehensive Review of Retinal Vascular and Optical Nerve Diseases Based on Optical Coherence Tomography Angiography. Appl Sci [Internet]. 2021;11(9):4158. Available from: https://doi.org/10.3390/app11094158

Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, et al. Optical coherence tomography angiography. Vol. 64, Prog Retin Eye Res [Internet]. 2018;64:1–55. Available from: https://doi.org/10.1016/j.preteyeres.2017.11.003

de Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retin Vitr [Internet]. 2015;1:5. Available from: https://doi.org/10.1186/s40942-015-0005-8

Wylęgała A, Teper S, Dobrowolski D, Wylęgała E. Optical coherence angiography: A review. Medicine [Internet]. 2016;95(41):e4907. Available from: https://doi.org/10.1097/MD.0000000000004907

Azzopardi G, Strisciuglio N, Vento M, Petkov N. Trainable COSFIRE filters for vessel delineation with application to retinal images. Med Image Anal [Internet]. 2015;19(1):46–57. Available from: https://doi.org/10.1016/j.media.2014.08.002

Lau QP, Lee L, Hsu W, Wong TY. Simultaneously Identifying All True Vessels from Segmented Retinal Images. IEEE Trans Biomed Eng [Internet]. 2013;60(7):1851-1858. Available from: https://doi.org/10.1109/tbme.2013.2243447

Ghazal M, Al Khalil Y, Alhalabi M, Fraiwan L, et al. 9-Early detection of diabetics using retinal OCT images. In: El-Baz AS, Suri JS (eds). Diabetes and Retinopathy [Internet]. United States: Elsevier; 2020. 173–204p. Available from: https://doi.org/10.1016/B978-0-12-817438-8.00009-2

Li W, Zhang Y, Ji Z, Xie K, et al. IPN-V2 and OCTA-500: Methodology and Dataset for Retinal Image Segmentation, distributed by Cornell University [Internet]. 2020. Available from:

https://doi.org/10.48550/arXiv.2012.07261

Bates NM, Tian J, Smiddy WE, Lee W-H, et al. Relationship between the morphology of the foveal avascular zone, retinal structure, and macular circulation in patients with diabetes mellitus. Sci Rep [Internet]. 2018;8:5355. Available from: https://doi.org/10.1038/s41598-018-23604-y

Ronneberger O, Fischer P, Brox T. U-net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds). Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 [Internet]. Munich, Germany: Springer; 2015: 234-241. Available from: https://doi.org/10.1007/978-3-319-24574-4_28

Sappa LB, Okuwobi IP, Li M, Zhang Y, et al. RetFluidNet: Retinal Fluid Segmentation for SD-OCT Images Using Convolutional Neural Network. J Digit Imaging [Internet]. 2021;34(3):691–704. Available from: https://doi.org/10.1007/s10278-021-00459-w

Rasamoelina AD, Adjailia F, Sinčák P. A Review of Activation Function for Artificial Neural Network. In: 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI) [Internet]. Herlany, Slovakia: IEEE; 2020: 281-286. Available from: https://doi.org/10.1109/SAMI48414.2020.9108717

Qi W, Wei M, Yang W, Xu C, et al. Automatic Mapping of Landslides by the ResU-Net. Remote Sens [Internet]. 2020;12(15):2487. Available from: https://doi.org/10.3390/rs12152487

Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: ICML'15: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37 [Internet]. Lille, France: JMLR; 2015: 448–456. Available from: https://dl.acm.org/doi/10.5555/3045118.3045167

He Y, Carass A, Liu Y, Jedynak BM, et al. Fully Convolutional Boundary Regression for Retina OCT Segmentation. In: Shen D, Liu T, Peters TM, Staib LH, et al. (eds). Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019 [Internet]. Shenzhen, China: Springer; 2019: 120–128. Available from: https://doi.org/10.1007/978-3-030-32239-7_14

Liu X, Song L, Liu S, Zhang Y. A review of Deep-Learning-Based Medical Image Segmentation Methods. Sustainability [Internet]. 2021;13(3):1224. Available from: https://doi.org/10.3390/su13031224

Publicado

2022-11-11

Cómo citar

Cisneros-Guzmán, F., Toledano-Ayala, M., Tovar-Arriaga, S., & Rivas-Araiza, E. A. (2022). Segmentación de imágenes de OCT y OCT-A por medio de Redes Neuronales Convolucionales. Revista Mexicana De Ingenieria Biomedica, 43(3), 15–24. https://doi.org/10.17488/RMIB.43.3.2

Número

Sección

Artículos de Investigación

Citas Dimensions

Artículos más leídos del mismo autor/a