Estimación en la Intención de Agarres: Cilíndrico, Esférico y Gancho Utilizando Redes Neuronales Profundas
DOI:
https://doi.org/10.17488/RMIB.41.1.9Palabras clave:
red neuronal artificial LSTM, red neuronal artificial de capas densas, agarres de manoResumen
Las amputaciones de extremidades superiores pueden producir diversos grados de incapacidad en la persona afectada, esto es exacerbado aún más, si se presenta durante un periodo de su vida laboral activa, por esta razón es de importancia social el estudio de las prótesis y algoritmos que ayuden a un mejor control de estas por parte del usuario. En esta investigación, se propone una arquitectura basada en redes neuronales recurrentes del tipo Long Short-Term Memory y redes convolucionales para la clasificación de señales electromiográficas, con aplicaciones para control de prótesis de mano. La red propuesta clasifica tres tipos de agarres realizados con la mano: cilíndrico, esférico y de gancho. El modelo propuesto al ser evaluado mostró una eficiencia (accuracy) del 89 %, en contraste con una red neuronal artificial basada en capas completamente conectadas que solo obtuvo una eficiencia del 80% en la predicción de los agarres. El presente trabajo se limita solamente a evaluar la red ante una entrada de electromiograma y no se implementó un sistema de control para la prótesis de la mano. Así, una arquitectura de redes convolucionales para el control de prótesis de mano que pueden ser entrenadas con las señales del sujeto.
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista mexicana de ingeniería biomédica.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Una vez que el artículo es aceptado para su publicación en la RMIB, se les solicitará al autor principal o de correspondencia que revisen y firman las cartas de cesión de derechos correspondientes para llevar a cabo la autorización para la publicación del artículo. En dicho documento se autoriza a la RMIB a publicar, en cualquier medio sin limitaciones y sin ningún costo. Los autores pueden reutilizar partes del artículo en otros documentos y reproducir parte o la totalidad para su uso personal siempre que se haga referencia bibliográfica al RMIB. No obstante, todo tipo de publicación fuera de las publicaciones académicas del autor correspondiente o para otro tipo de trabajos derivados y publicados necesitaran de un permiso escrito de la RMIB.