Afectación del Parénquima Pulmonar Analizada por Medio de las Componentes de Frecuencia del Volumen Tidal Evaluado por Bioimpedancia Eléctrica
DOI:
https://doi.org/10.17488/RMIB.45.2.2Palabras clave:
EPOC, pulmón, test de funciones pulmonares, tomografía por impedancia eléctricaResumen
Las pruebas de función pulmonar son fundamentales para detectar patologías, especialmente enfermedades pulmonares obstructivas crónicas (EPOC), destacando la importancia de evaluar la participación del parénquima pulmonar en el mantenimiento adecuado del intercambio gaseoso. La tomografía por la bioimpedancia eléctrica (TIE) ofrece una alternativa no invasiva para la evaluación de la función respiratoria mientras se conserva la respiración natural. Proponemos utilizar la TIE para detectar condiciones del parénquima pulmonar mediante el análisis de patrones de volumen tidal en el dominio de frecuencia. Veinte pacientes con EPOC fueron evaluados simultáneamente con un neumotacómetro y un dispositivo de TIE, realizando tres maniobras respiratorias de 30 segundos cada una. El análisis de espectros FFT proporcionó parámetros, incluyendo el área bajo la curva y los cuartiles (25 %, 50 %, 75 %) de los valores de potencia en seis regiones de frecuencia. Las correlaciones entre estos parámetros y los resultados de pruebas clínicas (capacidad de difusión pulmonar y análisis de gases en sangre arterial) revelaron asociaciones significativas, especialmente con PCO2. El análisis de regresión lineal múltiple predijo PCO2 con un R2adj = 0.827, sugiriendo la posibilidad de detectar de manera no invasiva la afectación del parénquima pulmonar al correlacionar los patrones ventilatorios de bioimpedancia FFT con el rendimiento del intercambio gaseoso en pacientes con EPOC.
Descargas
Citas
B. H. Culver, “Pulmonary function testing,” in Clinical Respiratory Medicine, S. G. Spiro, G. A. Silvestri, A. Agusti, Eds., Philadelphia, PA, United State: Elsevier, 2012, ch. 9, pp. 133-142.
A. Virani, S. Baltaji, M. Young, T. Dumont, T. Cheema, “Chronic Obstructive Pulmonary Disease: Diagnosis and GOLD Classification,” Crit. Care Nurs. Q., vol. 44, no. 1, pp. 9-18, Mar. 2021, doi: https://doi.org/10.1097/CNQ.0000000000000335
Global Initiative for Chronic Obstructive Ling Disease. “Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease.” Global Initiative for Chronic Obstructive Lung Disease. https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdf (accessed Sep. 28, 2023).
D. M. D. Halpin, G. J. Criner, A. Papi, D. Singh, et al., “Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease,” Am. J. Resp. Crit. Care, vol. 203, no. 1, pp. 24-36, 2021, doi: https://doi.org/10.1164/rccm.202009-3533SO
A. McGowan. “Recommendation from ERS Group 9.1 (Respiratory function technologists /Scientists) Lung function testing during COVID-19 pandemic and beyond.” ERS. https://ers.app.box.com/s/zs1uu88wy51monr0ewd990itoz4tsn2h (accessed Sep. 28, 2023).
M. C. McCormack, D. A. Kaminsky. “American Thoracic Society. Pulmonary function laboratories: Advice Regarding COVID-19.” American Thoracic Society. https://www.thoracic.org/professionals/clinical-resources/disease-related-resources/pulmonary-function-laboratories.php (accessed Sep. 16, 2023).
F. A. Escobar Revelo, V. H. Mosquera Leyton, C. F. Rengifo, “Electrical Impedance Tomography: Hardware Fundamentals And Medical Applications,” Ing. Solidar., vol. 16, no. 3, pp. 2-29, 2020, doi: https://doi.org/10.16925/2357-6014.2020.03.02
T. A. Khan, S. H. Ling, “Review on electrical impedance tomography: Artificial intelligence methods and its applications,” Algorithms, vol. 12, no. 5, pp. 70–88, 2019, doi: https://doi.org/10.3390/a12050088
P. Grasland-Mongrain, C. Lafon, “Review on Biomedical Techniques for Imaging Electrical Impedance,” IRBM, vol. 39, no. 4, pp. 243-250, 2018, doi: https://doi.org/10.1016/j.irbm.2018.06.001
Z. Wang, S. Yue, H. Wang, Y. Wang, “Data preprocessing methods for electrical impedance tomography: a review,” Physiol. Meas., vol. 41, no. 9, art. no. 09TR02, 2020, doi: https://doi.org/10.1088/1361-6579/abb142
Z. Zong, Y. Wang, Z. Wei, “A Review of Algorithms and Hardware Implementations in Electrical Impedance Tomography,” Prog. Electromagn. Res., vol. 169, pp. 59-71, 2020, doi: https://doi.org/10.2528/PIER20120401
S. Yuan, H. He, Y. Long, Y. Chi, I. Frerichs, Z. Zhao, “Rapid dynamic bedside assessment of pulmonary perfusion defect by electrical impedance tomography in a patient with acute massive pulmonary embolism,” Pulm. Circ., vol. 11, no. 1, pp. 1–3, 2021, doi: https://doi.org/10.1177/2045894020984043
H. He, Y. Long, I. Frerichs, Z. Zhao, “Detection of acute pulmonary embolism by electrical impedance tomography and saline bolus injection,” Am. J. Resp. Crit. Care., vol. 202, no. 6, pp. 881-882, 2020, doi: https://doi.org/10.1164/rccm.202003-0554IM
E. Krauss, D. van der Beck, I. Schmalz, J. Wilhelm, et al., “Evaluation of Regional Pulmonary Ventilation in Spontaneously Breathing Patients with Idiopathic Pulmonary Fibrosis (IPF) Employing Electrical Impedance Tomography (EIT): A Pilot Study from the European IPF Registry (eurIPFreg),” J. Clin. Med., vol. 10, no. 2, art. no. 192, 2021, doi: https://doi.org/10.3390/jcm10020192
M. Proença, F. Braun, M. Lemay, J. Solà, et al., “Non-invasive pulmonary artery pressure estimation by electrical impedance tomography in a controlled hypoxemia study in healthy subjects,” Sci. Rep., vol. 10, art. no. 21462, 2020, doi: https://doi.org/10.1038/s41598-020-78535-4
W. Onland, J. Hutten, M. Miedema, L. D. Bos, P. Brinkman, A. H. Maitland-van der Zee, A. H. van Kaam, “Precision Medicine in Neonates: Future Perspectives for the Lung,” Front. Pediatr., vol. 8, pp. 732-742, 2020, doi: https://doi.org/10.3389/fped.2020.586061
R. Cornejo, P. Iturrieta, T. M. Olegário, C. Kajiyama, et al., “Estimation of changes in cyclic lung strain by electrical impedance tomography: Proof‐of‐concept study,” Acta Anaesth. Scand., vol. 65, no. 2, pp. 228-235, 2021, doi: https://doi.org/10.1111/aas.13723
A. Rara, K. Roubik, T. Tyll, “Effects of pleural effusion drainage in the mechanically ventilated patient as monitored by electrical impedance tomography and end-expiratory lung volume: A pilot study,” J. Crit. Care, vol. 59, pp. 76-80, 2020, doi: https://doi.org/10.1016/j.jcrc.2020.06.001
S. Milne, J. Huvanandana, C. Nguyen, J. M. Duncan, et al., “Time-based pulmonary features from electrical impedance tomography demonstrate ventilation heterogeneity in chronic obstructive pulmonary disease,” J. Appl. Physiol., vol. 127, no. 5, pp. 1441-1452, 2019, doi: https://doi.org/10.1152/japplphysiol.00304.2019
C. Karagiannidis, A. D. Waldmann, P. L. Róka, T. Schreiber, S. Strassmann, W. Windisch, S. H. Böhm, “Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study,” Crit. Care, vol. 22, no. 1, art. no. 221, 2018, doi: https://doi.org/10.1186/s13054-018-2137-3
B. Vogt, Z. Zhao, P. Zabel, N. Weiler, I. Frerichs, “Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease,” Am. J. Physiol Lung Cell Mol. Physiol., vol. 311, no. 1, pp. L8-L19, 2016, doi: https://doi.org/10.1152/ajplung.00463.2015
B. De Lema, P. Casan, P. Riu, “Electrical impedance tomography: standardizing in the procedure in pneumology,” Arch. Bronconeumol., vol. 42, pp. 299–301, 2006, doi: https://doi.org/10.1016/s1579-2129(06)60146-8
J. Fornos Herrando, “Estimació del Patró Ventilatori mitjanc¸ ant Tomografía d’Impedància Elèctrica,” Bachelors dissertation, Universitat Politècnica de Catalunya, Cataluña, Spain, 2006.
D. B. Geselowitz, “An application of electrocardiographic lead theory to impedance plethysmography,” IEEE Trans. Biomed. Eng., vol. BME-18, no. 1, pp. 38-41, 1971, doi: https://doi.org/10.1109/TBME.1971.4502787
O. Casas, “Contribución a la obtención de imágenes paramétricas en tomografía de impedancia eléctrica para la caracterización de tejidos biológicos,” Ph.D. dissertation, Universitat Politècnica de Catalunya, Cataluña, Spain, 1998.
A. Fontova, “Desenvolupament d’un mòdul de comunicacions Ethernet per a un sistema de TIE,” Bachelors dissertation, Universitat Politècnica de Catalunya, Cataluña, Spain, 2004.
R. E. Serrano, B. De Lema, O. Casas, T. Feixas, et al., “Use of electrical impedance tomography (TIE) for the assessment of unilateral pulmonary function,” Physiol. Meas., vol. 23, art. no. 211, 2002, doi: https://doi.org/10.1088/0967-3334/23/1/322
O. Casas, J. Rosell, R. Bragós, A. Lozano, P. J. Riu, “A parallel broadband real-time system for electrical impedance tomography,” Physiol. Meas., vol. 17, art. no. A1, 1996, doi: https://doi.org/10.1088/0967-3334/17/4A/002
MedGraphics Products. “Technical specifications.” MedGraphics Products. http://www.sanomed.ee/images/Med.Graph/CPFSDusbSpiro.pdf (accessed Sept. 7, 2023).
J. Vestbo, S. S. Hurd, A. G. Agustí, P. W. Jones, et al., “Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary,” Am. J. Resp. Crit. Care, vol. 187, no. 4, pp. 347-365, 2013, doi: https://doi.org/10.1164/rccm.201204-0596PP
G. Ntritsos, J. Franek, L. Belbasis, M. A. Christou, et al., “Gender-specific estimates of COPD prevalence: a systematic review and meta-analysis,” Int. J. Chronic Obstr., vol. 13, pp. 1507-1514, 2018, doi: https://doi.org/10.2147%2FCOPD.S146390
P. P. Rickham, “Human experimentation. Code of ethics of the world medical association. Declaration of Helsinki,” Brit. Med. J., vol. 2, no. 5402, art. no. 177, 1964, doi: https://doi.org/10.1136/bmj.2.5402.177
F. García-Río, M. Calle, F. Burgos, P. Casan, et al., “Espirometría,” Arch. Bronconeumol., vol. 49, no. 9, pp. 388-401, 2013, doi: https://doi.org/10.1016/j.arbr.2013.07.007
J. M. Haynes, “Basic spirometry testing and interpretation for the primary care provider,” Can. J. Respir. Ther., vol. 54, no. 4, pp. 92-98, 2018, doi : https://doi.org/10.29390/cjrt-2018-017
J. A. Neder, S. Andreoni, A. Castelo-Filho, L. E. Nery, “Reference values for lung function tests: I. Static volumes,” Braz. J. Med. Biol. Res., vol, 32, no. 6, pp. 703-717, 1999, doi: https://doi.org/10.1590/S0100-879X1999000600006
N. Macintyre, R. O. Crapo, G. Viegi, D. C. Johnson, et al., “Standardization of the single breath determination of carbon monoxide uptake in the lung,” Eur. Respir. J., vol. 26, pp. 720-735, 2005, doi: https://doi.org/10.1183/09031936.05.00034905
L. Gattinoni, A. Pesenti, M. Matthay, Understanding blood gas analysis, Intens. Care Med. vol. 44, no. 1, pp. 91-93, 2018, doi: https://doi.org/10.1007/s00134-017-4824-y
M. Balleza-Ordaz, E. Alday-Perez, M. Vargas-Luna, S. Kashina, M. R. Huerta-Franco, L. A. Torres-González, P. J. Riu-Costa, “Tidal volume monitoring by a set of tetrapolar impedance measurements selected from the 16-electrodes arrangement used in electrical impedance tomography (EIT) technique. Calibration equations in a group of healthy males,” Biomed. Signal Process. Control, vol. 27, pp. 68-76, 2016, doi: https://doi.org/10.1016/j.bspc.2016.02.001
M. Balleza-Ordaz, R. Estrella-Cerón, T. Romero-Muñiz, M. Vargas-Luna, “Lung ventilation monitoring by electrical bioimpedance technique using three different 4-electrode thoracic configurations: Variability of calibration equations,” Biomed. Signal Process. Control, vol. 47, pp. 401-412, 2019, doi: https://doi.org/10.1016/j.bspc.2018.08.032
J. Karsten, T. Stueber, N. Voigt, E. Teschner, H. Heinze, “Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study,” Crit. Care, vol. 20, art. no. 3, 2015, doi: https://doi.org/10.1186/s13054-015-1161-9
S. Krueger-Ziolek, B. Schullcke, J. Kretschmer, U. Müller-Lisse, K. Möller, Z. Zhao, “Positioning of electrode plane systematically influences EIT imaging,” Physiol. Meas., vol. 36, art. no. 1109, 2015, doi: https://doi.org/10.1088/0967-3334/36/6/1109
E. Szczygieł, K. Zielonka, S. Mętel, J. Golec, “Musculo-skeletal and pulmonary effects of sitting position–a systematic review,” Ann. Agric. Environ. Med., vol. 24, no. 1, pp. 8-12, 2017, https://doi.org/10.5604/12321966.1227647
S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd ed., San Diego, CA, USA: California Technical Publishing, 1999.
M. Weeks, Digital signal processing using MATLAB and wavelets, 1st ed., Hingham, MA, USA: Infinity Science Press LLC, 2007.
M. Ghita, D. Copot, M. Ghita, E. Derom, C. Ionescu, “Low Frequency Forced Oscillation Lung Function Test Can Distinguish Dynamic Tissue Non-linearity in COPD Patients,” Front. Physiol., vol. 10, art. no.1390, 2019, doi: https://doi.org/10.3389/fphys.2019.01390
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Revista Mexicana de Ingenieria Biomedica
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Una vez que el artículo es aceptado para su publicación en la RMIB, se les solicitará al autor principal o de correspondencia que revisen y firman las cartas de cesión de derechos correspondientes para llevar a cabo la autorización para la publicación del artículo. En dicho documento se autoriza a la RMIB a publicar, en cualquier medio sin limitaciones y sin ningún costo. Los autores pueden reutilizar partes del artículo en otros documentos y reproducir parte o la totalidad para su uso personal siempre que se haga referencia bibliográfica al RMIB. No obstante, todo tipo de publicación fuera de las publicaciones académicas del autor correspondiente o para otro tipo de trabajos derivados y publicados necesitaran de un permiso escrito de la RMIB.